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Abstract

A new high-resolution and genuinely multidimensional numerical method for solving

conservation laws is being developed. It was designed to avoid the limitations of the

traditional methods, and was built from ground zero with extensive physics considerations.

Nevertheless, its foundation is mathematically simple enough that one can build from it a

coherent, robust, efficient and accurate numerical framework.

Two basic beliefs that set the new method apart from the established methods are

at the core of its development. The first belief is that, in order to capture physics more

efficiently and realistically, the modeling focus should be placed on the original integral

form of the physical conservation laws, rather than the differential form. The latter form

follows from the integral form under the additional assumption that the physical solution

is smooth, an assumption that is di_cult to realize numerically in a region of rapid change,

such as a boundary layer or a shock. The second belief is that, with proper modeling of the

integral and differential forms themselves, the resulting numerical solution should auto-

matically be consistent with the properties derived from the integral and differential forms,

e.g., the jump conditions across a shock and the properties of characteristics. Therefore a

much simpler and more robust method can be developed by not using the above derived

properties explicitly.

Specifically, to capture physics as fully as possible, the method requires that: (i) space

and time be unified and treated as a single entity; (ii) both local and global flux conser-

vation in space and time be enforced; and (iii) a multidimensional scheme be constructed

without using the dimensional-splitting approach, such that multidimensional effects and

source terms (which are scalars) can be modeled more realistically.

To simplify mathematics and broaden its applicability as much as possible, the method

attempts to use the simplest logical structures and approximation techniques. Specifically,

(i) it uses a staggered space-time mesh such that flux at any interface separating two con-

servation elements can be evaluated internally in a simpler and more consistent manner,

without using a separate flux model; (ii) it does not use many well-established techniques

such as Riemann solvers, flux splittings and monotonicity constraints such that the limi-

tations and complications associated with them can be avoided; and (iii) it does not use

special techniques that are not applicable to more general problems.

Furthermore, triangles in 2D space and tetrahedrons in 3D space are used as the basic

building blocks of the spatial meshes, such that the method (i) can be used to construct

2D and 3D non-dissipative schemes in a natural manner; and (ii) is compatible with the

simplest unstructured meshes.

Note that while numerical dissipation is required for shock capturing, it may also result

in annihilation of small disturbances such as sound waves and, in the case of flow with a

large Reynolds number, may overwhelm physical dissipation. To overcome this difficulty,

two different and mutually complementary types of adjustable numerical dissipation are

introduced in the present development.
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1. Introduction

Since its inception in 1991 [1], the space-time conservation element and solution ele-

ment method [1-32] has been used to obtain highly accurate numerical solutions for flow

problems involving shocks, rarefaction waves, acoustic waves, vortices, ZND detonation

waves, shock/acoustic waves/vortices interactions, dam-break and hydrauhc jump. This

article is the first of a series of papers that will provide a systematic and up-to-date descrip-

tion of this new method (hereafter it may be referred to abbreviatedly as the space-time

CE/SE method or simply as the CE/SE method). To answer frequently-asked questions

and clarify possible misconceptions, we shall begin this paper with (i) an overall view of the

CE/SE method and its capabihties, and (ii) an extensive comparison of the basic concepts

used by the CE/SE method with those used by other methods.

Currently, the field of computational fluid dynamics (CFD) represents a diverse col-

lection of numerical methods, with each of them having its own fimitations. Generally

speaking, these methods were originally introduced to solve special classes of flow prob-

lems. Development of the CE/SE method is motivated by a desire to build a brand new,

more general and coherent numerical framework that avoids the hmitations of the tradi-

tional methods.

The new method is built on a set of design principles given in [2]. They include: (i)

To enforce both local and global flux conservation in space and time, with flux evaluation

at an interface being an integral part of the solution procedure and requiring no interpo-

lation or extrapolation; (ii) To unify space and time and treat them as a single entity;

(iii) To consider mesh values of dependent variables and their derivatives as independent

variables, to be solved for simultaneously; (iv) To use only local discrete variables rather

than global variables like the expansion coefficients used in spectral methods; (v) To de-

fine conservation elements and solution elements such that the simplest stencil will result;

(vi) To require that, as much as possible, a numerical analogue be constructed so as to

share with the corresponding physical equations the same space-time invariant properties,

such that numerical dissipation can be minimized [5,10,24]; (vii) To exc/ude the use of

characteristics-based techniques (such as Riemann solvers); and (viii) To avoid the use of

ad hoc techniques as much as possible.

Moreover, the development of the CE/SE method is also guided by two basic beliefs

that set it apart from the estabhshed methods. The first belief is that, in order to cap-

ture physics more efficiently and realistically, the modeling focus should be placed on the

original integral form of the physical conservation laws, rather than the differential form.

The latter form follows from the integral form under the additional assumption that the

physical solution is smooth, an assumption that is dittlcult to rea//ze numerically in a re-

gion of rapid change, such as a boundary layer or a shock. The second belief is that, with

proper modehng of the integral and differential forms themselves, the resulting numerical

solution should automatically be consistent with the properties derived from the integral

and differential forms, e.g., the jump conditions across a shock and the properties of char-

acteristics. In other words, a much simpler and more robust method can be developed by
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not using the above derived properties explicitly.

With the exception of the Navier-Stokes solver, all the 1D schemes described in [2]

have been extended to become their 2D counterparts [9-11,14]. A more complete account

of these new 2D schemes and their applications will be given in this and the following

papers [3,4]. It will be shown in Sec. 3 that the spatial meshes used in these schemes

are built from triangles--in such a manner that the resulting meshes are completely dif-

ferent from those used in the finite element method. As a result, these schemes are (i)

compatible with the simplest unstructured meshes [31], and (ii) constructed without using

the dimensional-splitting approach, i.e., without applying a 1D scheme in each coordinate

direction. The dimensional-splitting approach is widely used in the construction of multidi-

mensional upwind schemes. Unfortunately, this approach is flawed in several respects [33].

In particular, because a source term is not aligned with a special direction, it is difficult to

imagine how this dimensional-splitting approach, in a logically consistent manner, can be

used to solve a multidimensional problem involving source terms, such as those modeling

chemical energy release.

Moreover, as will be shown shortly, because the CE/SE 2D schemes share with their

1D versions the same design principles, not only is the extension to 2D a straightforward

matter, each of the new 2D schemes also shares with its 1D version virtually identical
fundamental characteristics.

At this juncture, note that monotonicity conditions are not observed by general flow

fields, e.g., those involving ZND detonation waves [21]. As a result, techniques involving

monotonicity constraints are not used in the present development.

To give the reader, in advance, a concrete example that demonstrate the validity

of the two basic beliefs referred to earlier, a self-contained Fortran program is listed in

Appendix A. It is a CE/SE solver [23] for an extended Sod's shock tube problem that

is the original Sod's problem [38] with the additional complication of imposing a non-

reflecting boundary condition at each end of the computational domain. Note that the

flow under consideration contains discontinuities and, relative to the computational frame,

is subsonic throughout. It is well known that implementing a non-reflecting boundary

condition for a subsonic flow is much more difficult than doing the same for a supersonic

flow. This difficulty is further exacerbated by the fact that the traditional non-reflecting

boundary conditions, e.g., the characteristic, the radiation (asymptotic), the buffer-zone,

and the absorbing boundary conditions [39-44] are all based on an assumption that is not

valid for the present case, i.e., that the flow is continuous. In spite of the fact that solving

the present extended Sod's problem is substantially more difficult than the original Sod's

problem, the main loop in the program listed herein contains only 39 Fortran statements.

Not only is it very small in size, this program has a very simple logical structure. With

the exception

non-reflecting

statements or

implementing

the simplicity

of a single "if" statement used to identify the time levels at which the

boundary conditions must be imposed, it contains no conditional Fortran

functions such as "if", "amax", or "amin" that are often used in programs

high-resolution upwind methods. The small size of the listed program reflects

of the techniques employed by the CE/SE method to capture shock waves.
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It also results from the fact that the non-reflecting boundary conditions used in the present

solver are the simple extrapolation conditions Eqs. (2.66) and (2.67) given in Sec. 2. They

are much simpler than the traditional non-reflecting boundary conditions. On the other

hand, the absence of Fortran conditional statements is a result of avoiding the use of

ad hoc techniques. In spite of its small size and simple logical structure, according to

the numerical results generated by the listed program (presented here as Figs. l(a)-(c),

with the numerical results and the exact solutions denoted by triangles and solid lines,

respectively; see also [23]), the present solver is capable of generating nearly perfect non-

reflecting solutions using the same time-step size from t = 0. Note that, at t = 10, all the

waves have exited the computational domain, i.e., the exact solution is constant within

it. The theoretical values of density, velocity, and pressure are approximately 0.4262000,

0.9277462 and 0.3030000, respectively. The maximum magnitudes of the errors in the

numerically computed values of density, velocity, and pressure at t = 10 are approximately

0.000g, 0.0007, and 0.0004, respectively.

Note that Eqs. (2.66) and (2.67) represent only one of many sets of simple and ro-

bust non-reflecting boundary conditions developed especially for the CE/SE method [23].

Behind this development is a radica/new concept based entirely on an assumption about

the space-time//ux distribution in the neighborhood of a spatia/ boundary. As a result,

implementation of these CE/SE non-reflecting boundary conditions does not require the

use of characteristics-based techniques.

To further demonstrate the nontraditional nature of the CE/SE method, the numeri-

cal results generated using the steady-state non-reflecting boundary conditions that were

introduced and rigorously justified in [23] will also be presented here. Consider an alter-

nate CE/SE solver that differs from the above CE/SE solver only in the fact that the

steady-state boundary conditions Eq. (2.68) given in Sec. 2 are now taking the place of

Eqs. (2.66) and (2.67). At t = 0.2, the waves generated in the interior of the computational

domain have not yet reached the boundaries. In this case, with the given initial conditions

(i.e., two different uniform states separated by a discontinuity located at the dead center of

the domain), each of the above two solvers yield the same uniform solution in the vincinity

of the right or left boundary. As a result, at t = 0.2, the numerical results generated by

the alternate solver are identical to those shown in Fig. l(a). The numerical results of the

alternate solver at t = 0.4 are shown in Fig. 2(a). It is seen that, by this time, the shock

wave has passed cleanly through the right boundary. There is good agreement between

the numerical solution and the exact solution everywhere in the interior except for a slight

disagreement in the vicinity of the right boundary. Note that the right boundary values,

which do not vary with time, are discontinuous with respect to the neighboring interior

values. The numerical results at t = 0.6 are shown in Fig. 2(b). As seen from the density

profile, by this time, the contact discontinuity has also passed through the right boundary.

Agreement between the numerical solution and the exact solution continue to be good in

the interior. However, both left and right boundary values are now discontinuous with

respect to the neighboring interior values.

Note that several recent applications [13,16,17,26,28] of the CE/SE method to 2D
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aeroacousticsproblems reveal that: (i) the trivial nature of implementing CE/SE non-

reflecting boundary conditions is manifested even for 2D problems; (ii) accuracy of the

numerical results for non/./near Euler problems is comparable to that of a 4-6th order

compact difference scheme, even though nominally the CE/SE solver used is only of 2nd-

order accuracy; and (iii) most importantly, the CE/SE method is capable of accurately

modeling both small disturbances and strong shocks, and thus provides a unique tool

for solving flow problems where the interactions between sound waves and shocks are

important, such as the noise field around a supersonic over- and under-expanded jet. The

fact listed in item (i) is more fundamental in nature, and will be further discussed in a

separate paper. The following comments pertain to items (ii) and (iii):

(a) Assuming the same order of accuracy, generally speaking, the accuracy of a scheme

that enforces the space-time flux-conservation property is higher than that of a scheme

that does not. A compact scheme generally does not enforce the flux-conservation

property of the nonlinear Euler equations. On the contrary, not only is the present

scheme flux-conserving, its accuracy in nonlinear calculations is enhanced by its sur-

prisingly small dispersive errors [2,8,13,16,17]. Moreover, the nominal order of accu-

racy of an Euler solver is determined assuming a linearized form of the Euler equations.

Thus its significance with respect to a highly nonlinear solution of the Euler equations

may be questionable.

(b) while numerical dissipation is required /'or shock resolution, it may also result in

annihilation of small disturbances such as sound waves. Thus, a solver that can handle

both small disturbances and strong shocks must be able to overcome this difficulty.

It will be explained shortly that the CE/SE method is intrinsically endowed with this

capability. On the other hand, a high-resolution upwind scheme that focuses only on

shock resolution may introduce too much numerical dissipation [45].

Next we shall review briefly the inviscid version of the a-# scheme described in [2]. In

addition to providing a historical perspective, the review will remove, once and for all, any

lingering doubt from the reader's mind that the CE/SE method indeed differs substantially

in both concept and methodology from the well-established methods. In particular, it will

give in advance answers to questions such as: (i) is there any difference between the space-

time elements used here and those used in the finite element method? and (ii) what are

the key differences between the CE/SE method and other finite volume methods?

To proceed, consider an initial-value problem involving the PDE

Ou Ou

+ aT = 0 (1.1)

where the convection speed a is a constant. The exact solution to any such problem

has three fundamental properties: (i) it does not dissipate with time; (ii) its value at a

spatial point at a later time has a finite domain of dependence (a point) at an earlier

time; and (iii) it is completely determined by the initial data at a given time. Ideally, a

numerical solution for Eq. (1.1) should also possess the same three properties. Because

(i) a solution of a dissipative numerical scheme will dissipate with time, (ii) the value of a
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solution of an implicit scheme at any point (z, t) is dependent on all initial data, and all

the boundary data up to the time t, and (iii) the unique determination of a solution by a

scheme involving more than two time levels requires the specification of the data at at least

the first two time levels, an ideal solver must be a two-level, explicit, and non-dissipative

(i.e., neutra//y stable) scheme. In 1991, the first solver known to the authors that satisfies

the above conditions was reported in [1]. Because this new solver models Eq. (1.1) which
is characterized by the parameter a, it is referred to as the a scheme. The a scheme is

non-dissipative if the Courant number is less than unity.

At this juncture, the reader may wonder what the merit is of constructing a neutrally

stable scheme. After all, it is well known that its nonlinear extensions generally are unsta-

ble. To address this question, the significance of constructing such a scheme and the critical

role it plays in the development of the CE/SE method will be discussed immediately.

To proceed, note that there are several explicit and implicit extensions [2,12,25] of the
a scheme which are solvers for

Ou Ou 02u

0%+ - "b-xz  = 0 (1.2)

Here the viscosity coefficient #(> 0) is a constant. Because Eq. (1.2) is characterized by

the parameters a and #, these extensions are referred to as either the explicit a-# schemes

or the implicit a-# schemes. Each of these schemes reduces to the non-dissipative a scheme

when/z = 0. As a result, each of them has the property that the numerica/dissipation of

its solutions approaches zero as the physical dissipation approaches zero.

The above property is important because of the following observation: with a few

exceptions, the numerical solution of a time-marching problem generally is contaminated

by numerical dissipation. For a nearly inviscid problem, e.g., flow at a large Reynolds

number, numerical dissipation may overwhelm physical dissipation and cause a complete

distortion of the solution. To avoid such a difficulty, ideally a CE/SE solver for Eq. (1.2)

or for the Navier-Stokes equations should possess the above special property. Obviously

the development of such a solver must be preceded by that of a neutrally stable solver of

Eq. (1.1).

The problem of physical dissipation being overwhelmed by numerical dissipation does

not exist for a pure convection problem. However, as explained in the earlier discussion

about the delicate nature of simulating small disturbances in the presence of shocks, nu-

merical dissipation must still be handled carefully in this case.

Note that numerical dissipation traditionally is adjusted by varying the magnitude of

added artificial dissipation terms. However, after being stripped of these added artificial

dissipation terms, almost every traditional scheme (such as the Lax-Wendroff scheme) is

still not free from inherent numerical dissipation. Hence, numerical dissipation generally

cannot be avoided completely using the traditional approach.

This completes the discussion about the roles of non-dissipative schemes in the current

development. To proceed further, the construction of the 1D a scheme will be described

briefly.

NASA/TM--1998-208843 6



Let zl = x, and z2 = t be considered as the coordinates of a two-dimensional Eu-

clidean space E2. By using Gauss' divergence theorem in the space-time E2, it can be

shown that Eq. (1.1) is the differential form of the integral conservation law

/s ft. d_' = 0 (1.3)
(v)

As depicted in Fig. 3, here (i) S(V) is the boundary of an arbitrary space-time region V

in E2; (ii) ft = (au, u) is a current density vector in E2; and (iii) d_" = da _ with da and

if, respectively, being the area and the outward unit normal of a surface element on S(V).

Note that (i) ft. dg'is the space-time flux of ft leaving the region V through the surface

element d_', and (ii) all mathematical operations can be carried out as though E2 were an

ordinary two-dimensional Euclidean space.

Let fl denote the set of all mesh points (j,n) in E2 (dots in Fig. 4(a)) with n being

a half or whole integer, and (j - n) being a half integer. For each (j,n) E fl, let the

solution element SE(j,n) be the interior of the space-time region bounded by a dashed

curve depicted in Fig. 4(b). It includes a horizontal line segment, a vertical line segment,

and their immediate neighborhood. For the discussions given in this paper, the exact size of

this neighborhood does not matter. However, in case the conservation law Eq. (1.3) takes

a more complicated form in which the right side is a volume integral involving a source

term, the SEs must fill the entire computational domain such that the volume integral can

be modeled properly [21,22]. A SE that fulfills this requirement is depicted in Fig. 4(c).

For any (z,t) E SE(j,n), let u(x,t) and fz(x,t), respectively, be approximated by

u*(x,t;j,n) and ft*(z,t;j,n) which we shall define shortly. Let

u*(x,t;j,n) = u_ + (u_)y(x - xj) + (ut)_(t- t _) (1.4)

where (i) u?, (u=)y, and (u,)y are constants in SE(j, n), and (ii) (zj,t '_) are the coordinates

of the mesh point (j, n).

We shall require that u = u*(z,t ;j,n) satisfy Eq. (1.1) within SE(j,n). As a result,

(1.5)

Combining Eqs. (1.4) and (1.5), one has

u*(x,i;j,n)=u']+(u_)_[(x-xj)-a(t-tn)], (x,t) cSE(j,n) (1.6)

As a result, there are two independent marching variables uy and (u,)3 associated with

each (j, n) E ft. Furthermore, because ft = (au, u), we define

ft*(x,t;j,n) = (au*(z,t;j,n), u*(x,t;j,n)) (1.7)
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Let E2 be divided into non-overlapping rectangular regions (see Fig. 4(a)) referred to

as conservation elements (CEs). As depicted in Figs. 4(d) and 4(e), the CE with its top-

right (top-left) vertex being the mesh point (j,n) C _2 is denoted by CE_(j,n) (CE+(j,n)).

The discrete approximation of Eq. (1.3) is then

L .de= 0
(CE+(j,n))

(1.8)

for all (j, n) C 12. At each (j, n) C f_, Eq. (1.8) provides the two conditions needed to

solve its two independent marching variables. In the following, the manner in which the

integrals in Eq. (1.8) should be evaluated will be explained by considering the case that

involves CE_ (j, n).

According to Fig. 4(d), S(CE_(j,n)), i.e., the boundary of CE_(j,n), is formed by

four line segments. Among them, AB and AD lie within SE(j,n). As a result, the

flux leaving CE_(j, n) through these two line segments will be evaluated using Eqs. (1.6)

and (1.7) with the assumption that any point (x,t) on them belongs to SE(j,n). On

the other hand, because CB and CD lie within SE(j - 1/2, n - 1/2), the flux leaving

CE_(j,n) through them will be evaluated assuming any point (x,t) on them belongs to

SE(j- 1/2, n- 1/2).

According to Eq. (1.8), the total flux of fz* leaving the boundary of any conserva-

tion element is zero. Because the surface integration over any interface separating two

neighboring CEs is evaluated using the information from a single SE, obviously the lo-

cal conservation relation Eq. (1.8) leads to a global flux conservation relation, i.e., the

total flux of h* leaving the boundary of any space-time region that is the union of any
combination of CEs will also vanish.

From the above discussions, it becomes obvious that the space-time element used in

the finite element method differs from the current space-time SE and CE in both concept

and the roles they serve. In particular, the former is not introduced to enforce flux conser-

vation. In contrast to this, in the CE/SE method, flux conservation transmits information

between neighboring SEs, and no global smoothness requirements are made on the solu-

tion to link neighboring SEs. This strategy enables the accurate capturing of traveling

multidimensionM solution discontinuities, e.g., moving multidimensionad shock waves.

Furthermore, the CE/SE method is also fundamentally different from the traditional

finite-volume methods such as the high-resolution upwind methods [46,47] and the dis-

continuous Galerkin method [48] in one important respect, i.e., because of the space-time

staggering nature of its solution elements, the present method has a much simpler and

consistent procedure to evaluate the flux at an interface. The key features of CE/SE flux-
evaluation that distinguish it from those of the traditional methods are discussed in the

following remarks:

(a) Because an interface separating two neighboring CEs lies within a SE, the flux at this

interface is evaluated without interpolation or extrapolation. Furthermore, the SE to

NASA/TM--1998-208843 8



which a particular interface belongs is determined by a rule that is independent of the

local numerical solution. In other words, the concept of speciaJ upwind treatments

and the complications that arise from these treatments are entirely foreign to the

CE/SE method. To be more specific, consider the flux at the interface AD depicted

r_ U nin Fig. 4(d). It is completely determined by uj and ( _)/, two numerical variables

associated with the predetermined mesh point (j, n), i.e., point A.

(b) Flux evaluation is straightforward and it requires only simple integration involving the

first-order Taylor's expansion. No complicated techniques such as the characteristics-

based techniques are ever needed.

Finally, we also want to emphasize that the concepts used in the construction of the

a scheme are fundamentally different from several schemes introduced by Nessyahu and

Tadmor[49], and Sanders and Weiser [50] except that the meshes used by the a scheme

and the latter schemes are all staggered in time. The key features of the a scheme that

distinguish it from the latter schemes include: (i) the mesh values of both the dependent

variable and its spatial derivative are considered as the independent variables, to be solved

for simultaneously; and (ii) no interpolation or extrapolation techniques are used in the
construction of the a scheme. Note that the differences between the latter schemes and an

extension of the a scheme were also clearly spelled out by Huynh [51].

This section is concluded with the following remarks:

(a) The a scheme can be constructed from a different perspective in which both CEs and

SEs have the shape of a rhombus [2]. In this alternative construction, the differential

condition Eq. (1.5) is not assumed. Instead it becomes a result of a local flux conserva-

tion condition and Eq. (1.4). In other words, the a scheme can be constructed entirely

from flux conservation conditions and the assumption that u*(x, t ;j, n) is linear in x
and t.

(b) The a scheme has many non-traditional features. They were discussed in great detail

in [2].
(c) Because there are two independent marching variables at each mesh point C f/, two

ampfification factors appear in the von Neumann stability analysis of the a scheme [2].

It happens that these two factors are identical to those of the Leapfrog scheme [52] if

the latter factors arise from a "correct" von Neumann analysis [2]. Note that the main

Leapfrog scheme (excluding its starting scheme which relates the mesh variables at

the first two time levels), the Lax scheme [52], and the main DuFort-Frankel scheme

[52] share one special property, i.e., a solution to any one of these schemes is formed by

two decoupled solutions. Traditionally the yon Neumann analysis for these schemes

is performed without taking into account this decoupled nature. It is explained in

[2] why such an erroneous analysis will result in a dispersive property prediction that

makes the dispersion appear worse than it really is. Moreover, because (i) the a

scheme and the Leapfrog scheme share the same amplification factors, and (ii) the a

scheme is a two-level scheme while the Leapfrog scheme is a three-level scheme, the a

scheme can be considered as a more advanced and compact Leapfrog scheme.
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The fact that the amplit_cation factors of the a scheme are related to those

of a celebrated classical scheme is only one among a string of similar unexpected

coincidences encountered during the development of the CE/SE method. As it turns

out [2,12,25], the amplit_cation factors of the Lax, the Crank-Nicolson, and the DuFort-

Frankel schemes also are related to those of some of the extensions of the a scheme.

NASA/TM-- 1998-208843 10



2. Review of the 1D Schemes

In this section, we shall (i) review and reformulate the 1D schemes described in [2],

and (ii) fiH a gap in the derivation of Eq. (4.28) in [2]. Not only does the reformulation

enable the reader to see more clearly the structural similarity between the 1D solvers of

Eq. (1.1) and their Euler counterparts, it also makes it easier for him to appreciate the

consistency between the construction of the 1D CE/SE solvers and that of the 2D solvers

to be described in the later sections.

2.1. The a Scheme

As the first step, the marching procedure of the a scheme will be cast into a form
def

slightly different from that given in [2]. To proceed, let the Courant number u = a_,t/_,x.

Also let

"4- n def AX U n
(u_)j = 4 ( _)j (2.1)

for any (j,n) 6 _. Hereafter the superscript symbol "+" is used to denote a normMized

parameter. Using Eq. (2.1), Eqs. (1.6)-(1.8)imply that

n

[(a- .)it + (1 - .2).t]j = [(1- .)it -(a - .2)it+],_,/2j+,/_ (2.2)

and
Tb

[(1 -4-v)u -(1 - v2)it+_]j - [(1 -4- v)u -4- (1 - v2)u+_] n-a/2j-a/2 (2.3)

for all (j,n) E _. To simplify notation, in the above and hereafter we adopt a convention

that can be explained using the expression on the left side of Eq. (2.2) as an example, i.e.,

Tt

[(1- .). + (1 - -_),4]_ = (1- .)u 7 + (1 - ._)(u t)7

Moreover, to streamline the future development, we define

,n-112 def [it (1 + , +7n-1/2
8+Jj+l/2 = -- l./}itzJj+l/2

(2.4)

,,_-1/2 def [u + (1 , +1,_-1/2s_)j_a/2 = - u)u_ jj_l/2 (2.5)

and

. a+_n def 1 [ ]n--1/2__(S__n--1/2] (2.6)

By adding Eqs. (2.2) and (2.3) together, and using the above definitions, one has

n 1 [ xl ,_n--1/2 ,in--1/2]

"ItS _ [(i -- I/)(8+)j+l/2 + (1 + u)(s= -Jj-1/2J '
(j,n) C Ft (2.7)
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Let 1 - v 2 # 0, i.e., 1 - v _ 0 and 1 + r, # 0. Then Eqs. (2.2) and (2.3) can be divided by

(1 - u) and (1 + v), respectively. By subtracting the resulting equations from each other

and using Eqs. (2.4)-(2.6), one has

-'{- "re (_ a ± _ rt(u,)j = (,,, /j, (j,n) C 12 (2.8)

"in--l�2 and (s_ _n-1/2Because both (s+ Jj+l/2 ]j-li2 are explicit functions of the marching variables

at the (n - 1/2)th time level, Eqs. (2.7) and (2.8) form the explicit marching procedure for

the a scheme. Note that these equations can be obtained from the inviscid form of the a-#

scheme, i.e., Eq. (2.14) in [2]. Also note that the superscript symbol "a" in the parameter

(u_+)_ is introduced to remind the reader that Eq. (2.8) is valid for the a scheme.

2.2. The a-e Scheme

In the a-e scheme [2], CE+(j,n) and CE_(j,n), which are depicted in Figs. 4(d) and

4(e), respectively, are not considered as conservation elements, i.e., Eq. (1.8) is no longer

applicable. Instead, one assumes that

O, (j,n) e (2.9)
;,. dg= 12

(CE(j,n))

where CE(j,n)is the union of CE+(j,n) and CE_(j,n) (see Fig. 4(f)). In other words,

CE(j, n) is a conservation element in the a-e scheme. Again the local conservation condition

Eq. (2.9) leads to a global conservation condition [2], i.e., the total//ux of ft* leaving the

boundary of any space-time region that is the union of any combination of new CEs will
Mso vanish.

It was explained in [2] that Eq. (2.7) follows directly from Eq. (2.9). As a resultl the

former is also valid in the a-c scheme. The a-e scheme is formed by Eq. (2.7) and another

equation that differs from Eq. (2.8) only in the expression on the right side. To show more

clearly the similarity of the 1D schemes and their 2D versions to be described in the later

sections, in the following, the counterpart of Eq. (2.8) in the a-e scheme will be rederived

from a perspective different from that presented in [2].

Let (j,n) C 12. Then (j -4- 1/2, n- 1/2) C 12. Let

tn def n--l�2 n--l�2
uj+l/2 = uj+i/ + (2.10)

Substituting Eqs. (1.5) and (2.1) into Eq. (2.10) and using the definition t, = aAt/Az, one
has

t n +3 n--l�2

uj+a/_ = [u - 2, U_ jy+l/2 (2.11)

Note that, by definition, (j ± 1/2, n) _ 12 if (j,n) E 12. Thus uj±i/2,n is associated with a

mesh point _ 12. The reader is warned that similar situations may occur in the rest of this

paper.
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According to Eq. (2.10), u 'njJ:l/_ can be interpreted as a first-order Taylor's approxi-

mation of u at (j 4- 1/2, n). Thus

uln _ uln /lt TM uln

_ cq-\n def j+l/2 j-l�2 AX / j+l/2 -- j--l�2

JJ = ) (2.12)

is a central-difference approximation of Ou/Ox at (j,n), normalized by the same factor

,',x/4 that appears in Eq. (2.1). Note that the superscript "e" is used to remind the reader
c-t- n

of the central-difference nature of the term (u_)j. In the a-e scheme, Eq. (2.8) is replaced

by
+ n _ a+ _n= 2 (u; + + -(u::)j + - )j (2.13)

where e is a real number.

At this juncture, note that, at each mesh point (j,n) C _, Eqs. (2.7) and (2.8) are

the results of two conservation conditions given in Eq. (1.8). Because Eq. (2.13) does not

reduce to Eq. (2.8) except in the special case e = 0, at each mesh point (j, n) C 12, generally

the a-e scheme satisfies only the single conservation condition Eq. (2.9) rather than the

two consevation conditions Eq. (1.8). However, because (u_ +)] generally is present on the

right side of Eq. (2.13), the a-e scheme generally will still be burdened with the cost of

solving two conservation conditions at each mesh point. The exception occurs only for the

special case e = 1/2, under which Eq. (2.13) reduces to (u+)j = (u_ )j.

Note that the first part of the expression on the right side of Eq. (2.13), i.e., (u_+)7 ,

emerges from the development of the non-dissipative a scheme. As a result, it is the non-

dissipative part. On the other hand, the second part, whose magnitude can be adjusted

by the parameter e, represents numerical dissipation introduced by the difference between

the central difference term (u_ +)7 and the non-dissipative term (u_ +)7. Thus one may

heuristically conclude that the numerical dissipation associated with the a-e scheme can

be increased by increasing the value of e. It was shown in [2] that this conclusion is indeed

valid in the stability domain of the a-e scheme, i.e.,

0 _< e _ 1, and v 2 < 1 (2.14)

According to Eqs. (2.4)-(2.6), (2.11) and (2.12), both c+ ,_ ,_(u_)j and (u a+)j are explicitly

dependent on v (and therefore explicitly dependent on at). However, (u_ + _+ n--U_ )j is not

dependent on v. As a matter of fact, it can be shown that

_ = 21Ltu:r' + ] _ 41I,uj+al2i ,_-_12 _ Us-al2'_-'12"_) (2.15)

Let (du,)7 be the parameter defined by Eq. (3.2) in [2]. Then it can be shown that

n Ax "du n
(u; + - ua+)j = -_-( ,)j (2.16)
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Note that, in the original development [2], (du_)_ was introduced to break the sym-

metry of the stencil of the a scheme with respect to space-time inversion. This symmetry

breaking results in the a-e scheme that was originally defined by the matrix equation

Eq. (3.6) of [2]. Its two component equations are Eq. (2.7) and

r

+ n . a+_n | _n--1/2 in--l/2(u )j +(ut --
= (az)j Jr- [(Utlj+I/2 lj--1/2

1 I n-1/ 
2 _uj+ll2 - j-l�2 ] ] (2.17)

with the latter being equivalent to Eq. (2.13). It should be emphasized that the fact that
+n c+n

= (u_)j when e=(u_)j 1/2, and that therefore the a-e scheme can be considered as a

centred-difference scheme in this specied case, was a later accidented discovery.

2.3. The Euler a Scheme

For a reason that will soon become obvious to the reader, reformulation of the inviscid

(# = 0) version of the Navier-Stokes solver described in Section 5 of [2] will precede that

of the Euler solvers described in Section 4 of [2]. Because the inviscid version is also an

Euler solver and, like the a scheme, is free of numerical dissipation if it is stable, it will be
referred to as the Euler a scheme.

To proceed, consider the Euler equations [2]

Oum Ofm
0---_ -4- 0x -- 0, m = 1,2, 3 (2.18)

where (i) urn, m = 1,2, 3, are the independent flow variables to be solved for, and (ii) fm,

m = 1,2, 3, are known functions [2] of urn, m = 1,2, 3. Assuming that the physical solution

is smooth, Eq. (2.18) is a result of the more fundamental space-time flux conservation laws

m= 1,2,3 (2.19) m-dZ= O,
(v)

where fz m = (fro, Urn), m = 1,2, 3.

To proceed, let (i)

Ym,k do__fOfm/Ouk, m,k = 1,2,3 (2.20)

and (ii) F + be the 3 × 3 matrix formed by (At/Ax)fm,k, m,k = 1,2,3. Note that, as a

result of (ii), F + = (At/az)F where F is the matrix that appears in Eq. (4.8) in [2]. Also

let (urn)? be the numerical version of um at any (j,n) C ft. Because fm and fm,_ are

functions of urn, for any (j,n) C ft, we can define (fm)_ and (fm,k)y to be the values of

fm and fro,k, respectively, when urn, m = 1, 2, 3, respectively, assume the values of (Um)_,

m = 1, 2, 3. Furthermore, because fro, m = 1,2, 3, are homogeneous functions of degree 1

[53, p. 11] in the variables urn, m = 1,2, 3, we have

3

(fm)'] = E(f_,k)_(uk)y (2.21)
k=l
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Note that Eq. (2.21) is not essential in the development of the 1D CE/SE Euler solvers.

However, in some instances, it is used to recast some equations into more convenient forms.

For any (x,t) C SE(j,n), Um(X,t), fm(x,t) and hm(x,t) are approximated by

u;_(_,t ;j,n) doj(um)_ + (um_)_(x - x_) + (um_)_(t- t_) (2.22)

f*(x,t;j,n) = (fro)'] + (fm_)r_(z -- Xj) + (fmt)?(t- t n) (2.23)

and

ft_(x,t;j,n) = (f_(x,t;j,n), u_(x,t;j,n)) (2.24)

respectively [2]. Here (i) (um)_ and (um_)_ are the independent marching variables to be

r, , n U nsolved for, and (ii) (fm_)j, (fmt)_ and (umt)j are the functions of (um)_ and ( r_)j,

m = 1,2,3, defined by Eqs. (4.10), (4.11), and (4.17)in [2].

For all (j, n) C f_, we assume that

s h*. dg'= O, = 1,2,3 (2.25)m
(eE+(j,n))

Note that Eqs. (2.18), (2.19) and (2.25) are the Euler counterparts of Eqs. (1.1), (1.3)

and (1.8), respectively. With the aid of Eqs. (2.22)-(2.24), Eq. (2.25) implies that, for all

(j,n) c a,

(u_)_ - t_)j±_/_ + y (um_,j_/_ + (u_)_
(2.26)

+ -- t"_'J+_/_ - (f_)_J + 4_ L_n";±_/_ + (/m,)_j = 0.Ax

Eq. (2.26) is the inviscid version of the Navier-Stokes marching scheme originally given in

Eq. (5.19) of [2].

For each (j,n) E f_, let (i)

(um_)j+ n d¢f_ AX4(Um_)_, m = 1,2,3 (2.27)

(ii) uj_ and (u,_+)j,= respectively, be the 3 x 1 column matrices formed by (Urn)in and (u+,)j,n

m = 1,2,3, and (iii) (F+)_ be the 3 x 3 matrix formed by (At/ax)(fm,k)'], m,k = 1,2,3.

Then with the aid of Eqs. (4.10), (4.11) and (4.17) in [2], and Eq. (2.21), one can rewrite

Eq. (2.26) as a pair of matrix equations, i.e. for any (j, n) C gt,

[(I - F+)Z + (I - (F+ ?) "+ '_ (2.2s)u_]j = [(I- F+)ff - (I-(F+)_)u-_] n-1/_
j+l/2
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and

n

[(I+F+)ff-(I-(F+)2)ff+]j = [(I+F+)ff+(I-(F+)2)"-'+l n-1/2u.jj_l/2 (2.29)

where I is the 3 × 3 identity matrix.

Note that the//ux conservation conditions Eqs. (2.2) and (2.3), and its Euler coun-

terparts, i.e., Eqs. (2.28) and (2.29) share the same a/gebraic structure. As a matter of

fact, the former pair will become the latter pair if the symbols 1, t_, u and u + are replaced

by I, F +, ff and if+, respectively. As a result, Eqs. (2.28) and (2.29) win be solved by a

procedure similar to that used earlier to extract Eqs. (2.7) and (2.8) from Eqs. (2.2) and

(2.3). However, because (i) matrix multiplication is not commutative and (ii) the matrix
rt U n(F+)j is a function of ( re)j, m = 1,2,3, while v is a simple constant, as will be shown

shortly, the algebraic structure of the solution to Eqs. (2.28) and (2.29) is more complex

than that of Eqs. (2.7) and (2.8).

To proceed, let (j, n) C 12 and

_n--1/2 def r_+x .-?+l n--l�2 (2.30)

and
]n--1/2 def

(g'-,5-1/2 = [ff + (I - F+)u-_] n-1/25--1/2

Then the addition of Eqs. (2.28) and (2.29) implies that

(2.31)

1{us [(s- + [(s +---- 35_4_1/2 _ )s-J5_l/2 (2.32)

Note that: (i) Eq. (2.32)is equivalent to Eq. (4.24)in [2]; and (ii) Eqs. (2.30)-(2.32) are

the Euler counterparts of Eqs. (2.4), (2.5) and (2.7), respectively.

Equation (2.32) represents the first part of the solution to Eqs. (2.28) and (2.29).

To obtain the second part, one must assume the existence of the inverse of the matrix

[I- (F +)213 for all (j,n) C 12. In the following, we shall briefly discuss the significance of

this assumption.

Let v and c be the fluid speed and sonic speed, respectively. They are known functions

of urn, m = 1,2, 3 [2]. For each (j, n) C 12, let v_ and c_, respectively, denote the values of

v and c when urn, m = 1,2,3, respectively, assume the values of (um)_, m = 1,2,3. Let

= - c5), - v5, - + C_) (2.33)
1 AX 2 AX AX

Then, by using (i) the relation F + = (at/ax)F, (ii) the fact that the eigenvalues of the

matrix F are v -c, v and v + c (see Eq. (4.8) in [2]), and (iii) the fact that the eigenvalues

of f(A) are f()_), f()_2), f()_3), ..., f()'_) if the eigenvalues of a matrix A are )h, )_2, )_s,

..., A,_ and f(A) is a polynomial of A, one concludes that the eigenvalues of [I - (F +)2]_
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are [1 -((ul)7)2], g= 1,2,3. Becauseany squarematrix is nonsingular (and therefore its
inverseexists) if and only if all its eigenvaluesare nonzero [54, p.14], one concludesthat
the inverseof [/- (F +)2]7 exists if and only if

[(ul)_] 2 # 1, g = 1,2,3 (2.34)

In this paper, we shall assume a more restrictive condition than Eq. (2.34), i.e., for all

(j, n) C _2, the local Courant number u_ < 1. Here

Note that, because

n def /2 n=

(I- F+)(I + F +) =(I + F+)(I - F +) = I-(F+) 2

(2.35)

(2.36)

the inverse of [I ± (F +)]7 exists if the inverse of [I - (F +)217 exists.

Let (j,n) C ft. Let the marching variables at the (n-1/2)th time level be given. Then

u s can be evaluated using Eq. (2.32). Because [I-4- F+]7 is a function of "'_ui, it follows that

and

[(i- r+)?]-' [(i- (I-(r+) 2)= uz J j+1/2 (2.37)

n ._- n--l�2
(__)j dcf [(i + F+)y]-a [(i + F+)ff + (I- (F+) 2) u-_] j-1/_ (2.38)

_.-:,a+ '_n def 1 -_ n

(_t= jj = _(S+- #_)j (2.39)

can also be evaluated. Note that, in the above and hereafter, the inverse of a matrix A is

denoted by A -1.

To obtain the second part of the solution to Eqs. (2.28) and (2.29), they are multiplied

from the left by

[(I- F+)y] -a and [(I+ F+)_] -1

respectively. Let the resulting expressions be subtracted from each other. Then, with the

aid of Eq. (2.36), one obtains

(a_: )j : (az )j , (j,n) C gt (2.40)

Equations (2.32) and (2.40) define the marching procedure of the Euler a scheme. Note

that the superscript symbol "a" in -._+ n(u.)j is intoduced to remind the reader that Eq. (2.40)
is valid for the Euler a scheme.

It has been shown by numerical experiments that the Euler a scheme is neutrally stable

in the interior of the computational domain up to at least a thousand time steps when
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v_ < 1 for all (j, n) E ft. In these numerical experiments involving a shock-tube problem,

the computational domain was allowed to grow with time, so that the undisturbed fluid

state could always be prescribed at the computational boundaries as the exact solution.

As a matter of fact, by using an analysis similar to that given at the end of Sec. 6 in

[7], one can show that the linearized form of the Euler a scheme is neutrally stable when

< 1for (j,n) c a.

The parameters (S+)y and (S_)] can be evaluated by using Eqs. (2.37) and (2.38) di-

rectly. This direct evaluation involves inverting two 3 × 3 matrices which is computationally

costly. In the following, we shall describe a more efficient approach.

According to Eqs. (2.37) and (2.38), (S+)y and (5_)y are the solutions to

and

n--l/2

(I- F+)2(S+) 2 : [(I- F+)ff- (I-(F+)2)ff+]j+,/2 (2.41)

+ n - n (2.42)(I + F )j(S_)j = [(I+F+)ff+(I-(F+)2)ff+] n-1/2
j--l/2

respectively. Note that: (i) each of Eqs. (2.41) and (2.42) represents a system of three

scalar equations; (ii) because of the reason given in the paragraph preceding Eq. (2.37),

the coefficients of both systems are known if the marching variables at the (n - 1/2)th

time level are given, i.e., both systems can be considered as hnear; and (iii) because of the

assumption v_ < 1, each system has a unique solution. As a result of (i)-:(iii), both (S+)_

and (S_)] can be solved efficiently by using the Gaussian elimination method.

2.4. The Simplified Euler a scheme

In implementing the Euler a scheme, two systems of linear equations must be solved

for each (j, n) E ft. As a result, the Euler a scheme is locally implJdt [1, p.22]. In this

subsection we shall develop a simplified version that is completely explicit.

To proceed, the expressions

[(I- F+)y] -1 and [(I+F+)_] -1

in Eqs. (2.37) and (2.38) are approximated by

(i_ F+_n_l/2 ] -1Jj+ll2 J

respectively. As a result, one has

and _+V__1/2 ] -1
(I = JS-ll2}+

,_ ,-. ,,_-1/2 V_-1/2 (2.43)(S+)j ,_ts+)j+l/2 and (g_)_ "_(s'-,j-1/2

+_ \n--l/2 _n--1/2
where (s+)j+l/2 and (g'-Ij-l/2 are defined in Eqs. (2.30) and (2.31), respectively. Let

(ff_'+)2 aa 1 [ V__1/2 _ (_._V__1/2]= -_ (i'+_+1/2 ,j-_/2j (2.44)

NASA/TM-- 1998-208843 18



Then (i) -'_'+_n(u,)j can be evaluated explicitly, and (ii) as a result of Eqs. (2.39) and (2.43),

Eq. (2.40) can be approximated by

t" "_*at _ - \n

(j,n) C _ (2.45)

The marching procedure defined by Eqs. (2.32) and (2.45) is referred to as the simplified

Euler a scheme. Note that the superscript symbol "a'" in (ff_'+)_ is introduced to remind

the reader that Eq. (2.45) is valid for the simplified Euler a scheme.

Generally CE+(j,n), (j,n) E f_, are not conservation elements in the simplified

scheme. However, because Eq. (2.32) is equivalent to the conservation condition [2]

_s f_.dg'= O, (j,n) C £t and m = 1,2,3 (2.46)
(cE(j,n))

CE(j, n), (j, n) E _'/, are the conservation elements in the simplified scheme.

Note that by replacing the symbols s+, s_, u_ +, u, u +_, 1 and v in Eqs. (2.4)-(2.8) by

s+, __, u_a + , if, ff+_, I and F + , respectively, these equations will become Eqs. (2.30), (2.31),

(2.44), (2.32) and (2.45), respectively. In other words, the a scheme and the simplitled Euler

a scheme share the same algebraic structure.

The simplified Euler a scheme generally is unstable. However, as will be shown shortly,

this scheme can be extended to become the simplified Euler a-e scheme which does have a

large stability domain.

2.5. The Euler a-e Scheme

The process by which the a-e scheme was constructed from the a scheme will be used

to construct the F,uler a-e scheme from the Euler a scheme.

In the Euler a-e scheme, the conservation conditions given in Eq. (2.46) are assumed.

Because Eq. (2.32) is equivalent to Eq. (2.46), the former is also a part of of the Euler a-e

scheme. The Euler a-e scheme is formed by Eq. (2.32) and another equation that differs

from Eq. (2.40) only in the expression on the right side.

To proceed, let (j,n) C fl and

uj+l/: = uj: l/: + (2.47)

z _ _n--l/2 z _n--l/2
where [ut]j+l/2 is the column matrix formed by (Umt)j±a/2 , m = 1,2,3. With the aid of

Eqs. (4.10) and (4.17)in [2], Eq. (2.47)implies that

Let

-_,,, _ (ff ,,,,+-.+_n-1/2ttjil/2 - - z.t' It x )j±l/2 (2.48)

ln _ _ln

(_+)y d_j j+1/2 j-,/2 (2.49)
4
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Then the Euler a-e scheme is formed by Eq. (2.32) and

_.-?+ _n A.-?a-4- _n
(,_ jj = (,,_ JJ + 2e(_+ _ ff_+)jn (2.50)

where e is a real number. Obviously Eq. (2.50) reduces to (i) Eq. (2.40) when e = 0, and

(ii) (ff+)jn = (u_-'c+)j_ when e = 1/2. Also it has been shown numerically that (i) the Euler
a-e scheme generally is stable if

0<e<l, and u}<l forall (j,n) C12 (2.51)

and (ii) the numerical dissipation associated with the scheme increases as the value of e

increases. Note that Eqs. (2.47)-(2.50) are the Euler counterparts of Eqs. (2.10)-(2.13),
respectively.

2.6. The Simplified Euler a-e Scheme

According to Eq. (2.50), excluding the special case e = 1/2, implementation of the

Euler a-e scheme also requires the evaluation of -'a+ ,_(U_)j and therefore (see Eqs. (2.37)-
(2.39)) the solution of Eqs. (2.41) and (2.42). Thus the Euler a-e scheme is locally implicit

if e ¢ 1/2. A totally explicit variant, referred to as the simplified Euler a-e scheme, is

defined by Eq. (2.32) (or, equivalently, Eq. (2.46)) and

..-:,q- n _-:,at + _ n
(u_)j 2e(_+ ._'+,n (2.52)=(,% Jj + -_ _j

Obviously the simplified Euler a-e scheme (i) reduces to the simplified Euler a scheme

when e = 0, and (ii) is identicM to the Euler a-e scheme when e = 1/2.

Note that by replacing the symbols s+, s_, u_ +, u, u +, u', u_ +, 1 and u in Eqs. (2.4)-

(2.7) and (2.11)-(2.13) by g'+, g'_, -.a'+ if+, if,,u_ , if, ff_+, I and F +, respectively, these

equations will become Eqs. (2.30), (2.31), (2.44), (2.32), (2.48), (2.49) and (2.52) respec-
tively. In other words, the a-e scheme and the simplified Euler a-e scheme share the same

algebraic structure.

It has been shown numerically that the simplified Euler a-e scheme is stable if

0.03<e < 1, and r,2< 1 for all (j,n) e f_ (2.53)

A comparison between Eqs. (2.51) and (2.53) reveals that the simplified version is only

slightly less stable than the original version.

According to Eqs. (2.30), (2.31), (2.44), (2.48) and (2.49), both (u_+)jn and (u_-'a'+)j

_i¢'+_n-1/2 and (P+V _-1/2 (and thereforeare explicitly dependent on the the matrices __ Jj+l/2 _-- Ij-1/2

explicitly dependent on at). However, (ff_+ -.,'+ n- u s )j is free from this dependency. Let

(i) (dum_)_ be the parameter defined by Eq. (4.26)in [2], and (ii) (dff_)_ be the column

matrix formed by (du_,)2, rn = 1,2,3. Then it can be shown that

(_+ _,+_,, 1 r,-:+,_-l/2 ,-.+,n-a�23 1 /-.n-l/2 -_,_-1/2"_ Ax _ ,,
jj = + tu, j - - = T(d ,)j (2.54)

NASA/TM-- 1998-208843 20



With the above preliminaries, we arenow ready to provide a proof for Eq. (4.28) in
[2]. Note that the last equation wasintroduced in [2] simply as a "natural generalization"
of Eq. (3.10) in [2].

, ff,n isTo proceed,note that Eq. (2.47) is the matrix form of Eq. (4.27) in [2] i.e., j+l/2

(u' _'_ 1,2, 3, which were introduced in the latterthe column matrix formed by _ mJj+l/2, m =

equation. As a result, with the aid of Eqs. (2.27), (2.49) and (2.54), Eq. (2.52) can be

rewritten as

t +(2'- (2.55)(_m_)j

i.e., Eq. (4.28)in [2].

Because Eqs. (4.24) in [2] are equivalent to Eq. (2.32), the Euler scheme defined by

Eqs. (4.24) and (4.28) in [2] is identical to the simplified Euler a-e scheme.

2.7. The a-e-a-_ Scheme and Its Euler Versions

Consider the a-e scheme defined by Eqs. (2.7) and (2.13). If discontinuities are present

in a numerical solution, the above scheme is not equipped to suppress numerical wiggles

that generally appear near these discontinuities. In the following, we shall describe a

remedy for this deficiency.

Let

Then it can be shown that

_ c+_n def 1 . tn (2.56)

__+,_ 1 _+ ,_ (u_+)y]("_ Jj = } [(u_+b + _ (2.57)

i.e., c+ n n (u,_Ij. Next, let the function Wo be(u,)j is the simple average of (u_+)j and -c+,,_

defined by (i) Wo(O,O,a) = 0 and (ii)

(l_+l + 1_-I > o) (2.5s)

where x+, x_ and a _> 0 are real variables. Note that (i) to avoid dividing by zero, in

practice a small positive number such as 10 -s° is added to the denominator in Eq. (2.58);

and (ii) Wo(x-, x+; a), a nonlinear weighted average of x_ and x+, becomes their simple

average if a = 0 or I_-I = [_+l. Furthermore, let

n = ([uc+'_n [ltc+ n.o_)(uy+)j d_fWo _ _+_,_ __)j, (2.59)

Note that the superscript "w" is used to remind the reader of the weighted-average nature

of the term (u_+)_. With the aid of the above definitions, a more advanced scheme,
referred to as the a-e-a-t3 scheme, can be defined by Eq. (2.7) and

-4- n _ a+ _n (2.60)
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Here _ > 0 is another adjustable constant. Note that Eq. (2.60) can be rewritten as

+ n c+ n c+ n. c+ n _(u_)j = _wo ((u_+)j , + - Z)(,,_ )j +(u__)j,a) (1 (2e- 1)(u; + ua+) _. (2.61)

It can be shown easily that the a-e-a-_ scheme reduces to the a-e scheme if a = 0 or _ = 0.

The expression on the right side of Eq. (2.60) contains three parts. The first part is
a non-dissipative term _+ '_(u,)j. The second part is the product of 2e and the difference
between the central difference term c+ ,_ (_,a+V_(U,)j and the non-dissipative term __, /j" The

third part is the product of _ and the difference between a weighted average of (u_ +)7

and (u_ +_)7 and their simple average. Numerical dissipation introduced by the second part

generally is effective in damping out numerical instabilities that arise from the smooth

region of a solution. But it is less effective in suppressing numerical wiggles that often occur

near a discontinuity. On the other hand, numerical dissipation introduced by the third

part is very effective in suppressing numerical wiggles. Moreover, because the condition
c+ n c+ n

I(u_+)j I = f(u__)_ I more or less prevails and thus the weighted average is nearly equal

to the simple average (see the comment given immediately following Eq. (2.58)) in the

smooth region of the the solution, numerical dissipation introduced by the third part has

very slight effect in the smooth region.

From the above disscusion, one concludes that there are two different types of numer-

ical dissipation associated with the a-e-a-_ scheme and they complement each other. As

a result, the a-e-a-t3 scheme can handle both small disturbances and sharp discontinuies

simultaneously if the values of e, a and fl are chosen properly (usually e = 1/2, a = 1,2

and _ = 1). Also note that, to give the CE/SE method more flexibility in controlling local

numerical dissipation, the parameters e and/3 can even be considered as functions of local

dynamical variables and mesh parameters (see Sec. 8).

Similarly, the Euler a-e scheme and the simplified Euler a-e scheme can be modified

to become the Euler a-e-a-_ scheme and the simplified Euler a-e-a-_ scheme, respectively,

by simply replacing Eqs. (2.50) and (2.52) with

..-*-+-\n _.-TaA-_n
(%)j 2e(_ + ff_+ '_ -.c+V_= (_)j + - )j +_(_+- _ ,j (2.62)

and

(,%)j 2e(_+ - ,7_'+ V_ ,_= (u,)j + _, ,j + Z(_+ - _+)j

respectively. Here _w+ n(u_ )j is the 3 x 1 column matrix formed by

(2.63)

cA- nwo ((_m_÷)j , cA-(Um__)j;a), m= 1,2,3

where

uCA- "_n def 1 , ),_m_+Jj = -4--_((um j+l/2 - (um)_]) (2.64)

' " and (u_)] being the mth components of frill/2 and "_with (urn)j+1� 2 u s , respectively.
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2.8. The 1D CE/SE Shock-Capturing Scheme

Let e = 1/2 and /3 = 1. Then the Euler a-e-a-fl scheme and the simplified Euler

a-e-a-fl scheme reduce to the same scheme. The reduced scheme is defined by Eq. (2.32)
and

, c+ , _._) 1,2,3 (2.65)(u+_)j = wo ((_m_+)j,(u_,+__)j, , m =

where (j,n) C fL

The above scheme is one of the simplest among the Euler solvers known to the authors.

The value o: a is the only adustable parameter allowed in this scheme. Because it is totally

explicit and has the simplest stencil, the scheme is also highly compatible with parallel

computing. Furthermore, it has been shown that the scheme can accurately capture shocks

and contact discontinuities with high resolution and no numerical oscillations. For these

distinctive features and for convenience of future reference, the reduced scheme will be

given a special name, i.e., the 1D CE/SE shock-capturing scheme. Note that this scheme

with a = 1 is implemented in the two shock-tube solvers referred to in Sec. 1. Consider

only the case that all spatial boundary points (j, n) C f_ are at the time levels n = 0,1,2,...

(see Fig. 4(a)). The non-reflecting boundary conditions used in the first solver, i.e., the

one listed in Appendix A, are: (i)

_n--1/2 i ,.-q-._n--l/2

Uffj = Uj_1/2 and (u-_ )_ = (u, )j-1/2, n = 1,2,3, ... (2.66)

if (j, n) is a mesh point on the right spatial boundary; and (ii)

-..*n --,n--l/2 z -*+xn--1/2

uj = _j+_/_ and (_)? = _ =(u_)j+l/2, 1, 2,3,... (2.67)

if (j, n) is a mesh point on the left spatial boundary. On the other hand, for the alternate

solver, the steady-state boundary conditions

7?n

uj = u-_ and (u_-x)? =: ..-,+,o (2.68)(uz)j, n= 1,2,3,...

is imposed at any mesh point (j, n) on the right or left spatial boundary.
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3. Geometrical Description of Conservation Elements

in Two Spatial Dimensions

In Sec. 2, it was established that, for each 1D CE/SE solver, there were 2M indepen-

dent marching variables per mesh point with M being the number of conservation laws to

be solved. Because M conservation conditions are imposed over each CE, two CEs were

introduced at each mesh point such that both the 1D a scheme and the 1D Euler a scheme

can be constructed by solving, at each mesh point (j, n) E fl, for the 2M variables using

the 2M conservation conditions imposed over CE_(j,n) and CE+(j,n).

As will be shown in the following sections, for each 2D CE/SE solver, there are 3M

independent marching variables per mesh point. As a result, construction of the 2D a

scheme and the 2D Euler a scheme demands that three CEs be defined at each mesh

point. In this section, only the basic geometric structures of these CEs will be described.

Consider a spatial domain formed by congruent triangles (see Fig. 5). The center

of each triangle is marked by either a hollow circle or a solid circle. The distribution of

these hollow and solid circles is such that if the center of a triangle is marked by a solid

(hollow) circle, then the centers of the three neighboring triangles with which the first

triangle shares a side are marked by hollow (solid) circles. As an example, point G , the

center of the triangle ABDF, is marked by a solid circle while points A, C and E, the

centers of the triangles AFMB, ABJD and ADLF, respectively, are marked by hollow

circles. These centers are the spatial projections of the space-time mesh points used in the

2D CE/SE solvers.

To specify the exact locations of the mesh points in space-time, one must also specify

their temporal coordinates. In the 2D CE/SE development, again we assume that the

mesh points are located at the time levels n = 0, +1/2, +1, +3/2,... with t = n At at the

nth time level. Furthermore, we assume that the spatial projections of the mesh points at

a whole-integer (haif-integer) time level are the points marked by hollow (solid) circles in
Fig. 5.

Let the triangles depicted in Fig. 5 lie on the time level n = 0. Then those points

marked by hollow circles are the mesh points at this time level. On the other hand, those

points marked by solid circles are not the mesh points at the time level n = 0. They are

the spatial projections of the mesh points at half-integer time levels.

Points A, C and E, which are depicted in Figs. 5 and 6(a), are three mesh points at

the time level n = 0. Point G', which is depicted in Fig. 6(a), is a mesh point at the time

level n = 1/2. Its spatial projection at the time level n = 0 is point G. Because point G

is not a mesh point, it is not marked by a circle in the space-time plots given in Figs. 6(a)

and 6(c). Hereafter, only a mesh point, e.g., point G', will be marked by a solid or hollow

circle in a space-time plot.

The conservation elements associated with point G' are defined to be the space-time

quadrilateral cylinders GFABG'F'A'B', GBCDG'B'C'D', and GDEFG'D'E'F that are

depicted in Fig. 6(a). Here (i) points B, D and F are the vertices of the triangle with
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point G as its center (centroid) (see also Fig. 5), and (ii) points A', B', C', D', E' and F'

are on the time level n = 1/2 with their spatial projections on the time level n = 0 being

points A, B, C, D, E and F, respectively.

Point G' is a mesh point at a half-integer time level. For a mesh point at a whole-

integer time-level, the conservation elements associated with it can be constructed in a

similar fashion. As an example, consider Fig. 6(5). Here points B' (B"), I' (I"), J' (J"),

K'(K'), D'(D"), G'(G")and C'(C') areon the time level n = 1/2 (n = 1) with their

spatial projections on the time level n = 0, respectively, being the points B, I, J, K, D,

G and C that are depicted in Fig. 5. Point C" is a mesh point at the time level n = 1. By

definition, the conservation elements associated with point C" are the quadrilateral cylin-

ders CIJ'KID'C'J"K'D ", C'D'G'B'C"D'G"B" and C IB'IIJ'C'B"I"J ". The relative

space-time positions of the six CEs associated with mesh points G r and C" are depicted

in Fig. 6(c).

Recall that, in the development of the 1D a scheme, a pair of diagonally opposite

vertices of each CE+(j,n) (see Figs. 4(d) and 4(e)) are assigned as mesh points. Fur-

thermore, the boundary of each CE+(j, n) is a subset of the union of the SEs associated

with the two diagonally opposite mesh points of this CE. In the 2D development, as seen

from Figs. 6(a)-(c), two diagonally opposite vertices of each CE are also assigned as mesh

points. In Sec. 4, we shall define the SEs such that even in the 2D case, the boundary of a

CE is again a subset of the union of the SEs associated with the two diagonally opposite

mesh points of this CE.

As a preliminary to the derivation of several equations to be given in Sec. 4, this

section is concluded with a discussion of several geometric relations involving point G and

the vertices of the hexagon ABCDEF that are depicted in Fig. 5. By using the facts that

(i) points A, C, E and G are the geometric centers of four neighboring congruent triangles

AFMB, _BJD, ADLF and ABDF, respectively; and (ii) any two of the above four

triangles form a parallelogram (note: two congruent triangles sharing one side may not

form a parallelogram), it can be shown that:

(a) CD, GE, BG and AF are parallel line segments of equal length.

(b) AB, GC, FG and ED are parallel line segments of equal length.

(c) BC, GD, AG and FE are parallel line segments of equal length.

(d) Point G is the geometric center of the hexagon ABCDEF and the triangle ACE.

Note that the line segments GA, GC, GE AC, CE and EA are not shown in Fig. 5. Also

note that, because the hexagon BIJKDG (depicted in Fig. 5) is congruent to the hexagon

ABCDEF, a set of geometric relations similar to those listed above also exists for the

vertices and the center of the hexagon BIJKDG.
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4. The 2D a Scheme

In this section, we consider a dimensionless form of the 2D convection equation, i.e.,

Ou Ou Ou

O_ + a_ -_z + ay _yy = 0 (4.1)

where a,, and ay are constants. Let za = z, z2 = y, and z3 = t be the coordinates of a

three-dimensional Euclidean space E3. By using Gauss' divergence theorem in the space-

time Ez, it can be shown that Eq. (4.1) is the differential form of the integral conservation

law

Js ft • dg'= 0 (4.2)
(y)

Here (i) S(V) is the boundary of an arbitrary space-time region V in E3, (ii)

de2(a u, a u, u) (4.3)

is a current density vector in E3, and (iii) dg= do" _ with do" and g, respectively, being the

area and the outward unit normal of a surface element on S(V). It was shown in Sec. 3,

that E3 can be divided into nonoverlapping space-time regions referred to as conservation

elements (CEs).

In the following analysis, the nontraditional space-time mesh that was sketched in

Sec. 3 will be rigorously defined. To proceed, the spatial projections of the mesh points

depicted in Fig. 5 are reproduced in Fig. 7. Note that the dashed lines that appear in

Fig. 7 are the spatial projections of the vertical interfaces (see Fig. 6(a)-(c)) that separate

different CEs. Also note that, as a result of the geometric relations listed at the end of

Sec. 3, any dashed line can point only in one of three different fixed directions. We assume

that the congruent triangles depicted in Fig. 5 are aligned such that one of the above fixed

directions is the z-direction.

Each mesh point marked by a solid or hollow circle is assigned a pair of spatial indices

(j, k) according to the location of its spatial projection. Obviously, a mesh point can

be uniquely identified by its spatial indices (j, k) and the time level n where it resides.

According to Figs. 8 and 9, the spatial projections of the mesh points that share the same

value of j (k) lie on a straight line on the z-y plane with this straight line pointing in the

direction of the k- (j-) mesh axis.

Let

t,_ a¢_=fnat, n = 0, -4-1/2, -4-1, ±3/2,... (4.4)

Let j and k be spatial mesh indices with j,k = 0, ±1/3, +2/3, +1, .... Let f_a denote

the set of mesh points (j,k,n) with j,k = 0,_1,+2,..., and n = +1/2, ±3/2, +5/2, ....

These mesh points are marked by solid circles. Let Ft2 denote the set of mesh points

(j,k,n) with j,k = 1/3, 1/3 ± 1, 1/3 + 2,..., and n = 0,±1,+2, .... These mesh points
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are marked by hollow circles. The union of _'_1 and f12 will be denoted by _. Note that

the same symbol f'/ was adso used to denote the set of mesh points used in the 1D solvers

(see Sec.2). Hereafter, unless specified otherwise, the new definition of Yt is assumed.

Each mesh point (j, k, n) C f_ is associated with (i) three conservation elements (CEs),

denoted by CE,.(j,k,n), r = 1,2,3 (see Figs. 10(a) and ll(a)); and (ii) a solution element

(SE), denoted by SE(j,k,n)(see Figs. 10(b) and 11(b)). Each CE is a quadrilateral cylinder

in space-time while each SE is the union of three vertical planes, a horizontal plane, and

their immediate neighborhoods. Note that the CEs and the SE associated with a mesh

point (j, k, n) C fll differ from those associated with a mesh point (j, k, n) E f12 in their

space-time orientations.

By using the geometric relations listed at the end of Sec. 3, one can conclude that

the spatial coordinates of the vertices of the hexagon ABCDEF, which appears in both

Figs. 10(a) and 11(a), are uniquely determined by three positive parameters w, b and h

(see Fig. 12(a)) if (i) one assumes that DA is aligned with the x-direction, and (ii) the

spatial coordinates of point G (the centroid of the hexagon) are given. Note that w, b and

h, respectively, are the lengths of the line segments DM, MH and BIt with (i) DM being

a median of the triangle &BDF, and (ii) points G, M and H being on the line segment

DA. Also note that a dashed line in Fig. 7 may appear in other figures as a solid line.

According to Fig. 7, E3 can be filled with the CEs defined above. Moreover, it is

seen from Figs. 10(a), 10(b), ll(a), and 11(b) that the boundary ofa CE is formed by the

subsets of two neighboring SEs.

Let the space-time mesh be uniform, i.e., the parameters _t, w, b, and h are constants.

Let xj,k and yj,k be the x- and y- coordinates of any mesh points (j, k, n) C fL Let x0,0 = 0

and y0,0 = 0. Then information provided by Figs. 12(a) and 12(b) implies that

xj,k = (j + k)w + (k - j)b, yj,k = (k - j)h (4.5)

Let EI, if2, n3, if4, ns, and ffa be the vectors depicted in Fig. 12(a). They lie on the x-y

plane and are the outward unit normals to AB, BC, CD, DE, EF, and FA, respectively.

It can be shown that

ffl = (h,-b + w/3,0) if4 = -if1 (4.6a)
v/h2 + (b- w/3) '

and

if2 = (0,1,0), _s = -if2 (4.6b)

(-h,b+w/3,0)
ffa = 7/6 = -ff3 (4.6c)

v/h2 + (b + w/3) 2'

by

For any (x,y,t) e SE(j,k,n), u(x,y,t) and fr(z,y,t), respectively, are approximated

u*(x,y,t;j,k,n) def n n= uj, k +(u_)],k(z--zj,_)+(%)j,k(y--yj,k)+(ut)'],_(t--t n) (4.7)
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and

fC(x,y,t;j,k,n) clef [a_u.(x,y,t;j,k,n),auu.(x,y,t;j,k,n),u.(x,y,t;j,k,n)] (4.8)

where uj_,_, (u_)j_,_, (uu)j_,k, and (u_)j_,k are constants within SE(j,k,n). The last four
coefficients, respectively, can be considered as the numerical analogues of the values of

u, Ou/Ox, Ou/Oy, and Ou/Ot at (xj,_,yj, k,t'_). As a result, the expression on the right

side of Eq. (4.7) can be considered as the first-order Taylor's expansion of u(x,y,t) at

(xj,k, yj,k, tn). Also note that Eq. (4.8) is the numerical analogue of Eq. (4.3).

We shall require that u = u*(x,y,t;j,k,n) satisfy Eq. (4.1) within SE(j,k,n). As a

result,

U n _ n( ,)j,_ - [a_(u_)_,_+ a_(u_)j,k] (4.9)

Substituting Eq. (4.9) into Eq. (4.7), one has

u*(x,y,t;j,k,n) = uj,k + ( _)j,k [(x -- xJ,k) -- a_ --

+ (u_)j_,_[(y -- yj,_) --a_(t -- t_)].
(4.10)

n U n nThus there are three independent marching variables, i.e., uj,k, ( _)j,k, and (uy)j,k as-

sociated with a mesh point (j, k, n) • _. For any (j, k,n) e 121, these variables will be

determined in terms of those associated with the mesh points (j + 1/3, k + 1/3, n - 1/2),

(j - 2/3, k + 1/3,n- 1/2), and (j + 1/3, k- 2/3, n- 1/2) (see Fig. 13(a)) by using the

three flux conservation relations

/_ ;r .d_= o,
(CEr(j,k,n))

= 1,2,3 (4.11)

Similarly, the marching variables at any (j, k, n) • f12 are determined in terms of those

associated with the mesh points (j - 1/3, k- 1/3, n- 1/2), (j + 2/3, k- 1/3,n- 1/2), and

(j - 1/3, k + 2/3, n- 1/2) (see Fig. 13(b)) by using the three flux conservation relations

Eq. (4.11). Obviously, Eq. (4.11) is the numerical analogue of Eq. (4.2).

As a result of Eq. (4.11), the total flux leaving the boundary of any CE is zero.

Because the flux at any interface separating two neighboring CEs is calculated using the

information from a single SE, the flux entering one of these CEs is equal to that leaving

another. It follows that the local conservation conditions Eq. (4.11) wiU lead to a global

conservation condition, i.e., the total flux leaving the boundary of any space-time region

that is the union of any combination of CEs w///also vanish.

In the following, several preliminaries will be given prior to the evaluation of Eq. (4.11 ).

To proceed, note that a mesh line with j and n being constant or a mesh line with k and n

being constant is not aligned with the x-axis or the y-axis. We shall introduce a new spatial

coordinate system ((,_) with its axes aligned with the above mesh lines (see Fig. 12(c)).
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Let g_ and gy be the unit vectors in the x- and the y- directions, respectively. Let

g_ and g, be the unit vectors in the directions of D-F and D-B (i.e., the j- and the k-

directions-see Figs. 12(a)-(c)), respectively. It can be shown that

g¢---[(w - b)¢_- hG]/a¢ (4.12)

and

where

and

Ar 1 = =

(4.13)

(4.14)

(4.15)

Let the origin of (x,y) also be that of (_,T/). Then, at any point in Ea, the coordinates

(_,r/) are defined in terms of (x,y) using the relation

(_g(; + r/g_ = xg= + ygy (4.16)

Substituting Eqs. (4.12) and (4.13) into Eq. (4.16), one has

(y) :T(_) (4.17)

and

Here

(_) =T-_ (y) (4.18)

T

w-b w+b)h h

(4.19)

and

( A¢ (w + b)A¢ )

2w 2wh

_,_ (w - b)A,7
2w 2wh

Note that the existence of T -1, the inverse of T, is assured if wh # O.

(4.20)
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With the aid of Eqs. (4.5), (4.18), and (4.20), it can be shown that the coordinates

((,y) of any mesh point (j,k,n) E 12 are given by

_- j A(, and y = kay (4.21)

i.e., a( and zxy are the mesh intervals in the (- and the y- directions, respectively.

Next we shall introduce several coefficients that are tied to the coordinate system

((, y). Let

(a() defT-l( a_)an ay (4.22)

Also, for any (j, k, n) C 12, let

(4.23)

where T _ is the transpose of T. For those who are familiar with tensor analysis [55], the

following comments will clarify the meaning of the above definitions:

(a) (a;,an) are the contravariant components with respect to the coordinates ((,y) for

the spatial vector whose x- and y- components are a_ and av, respectively.
U n rt(b) ((;)j,k,(Un)j,k) are the covariant components with respect to the coordinates ((,y)

U nfor the spatial vector whose x- and y- components are ( =)j,k and n(uu)j,k, respectively.
(c) Because the contraction of the contravariant components of a vector and the covariant

components of another is a scalar, Eq. (4.9) can be rewritten as

(d)

(U_)jnk = -- [ai(ui)jn, k + a,7(Un)_,k] (4.24)

Under the //near coordinate transformation defined by Eqs. (4.17) and (4.18), ((-

ja(, y- kay) are the contravariant components with respect to the coordinates ((, y)

for the spatial vector whose x- and y- components are x-xi, k and Y-yj,k, respectively.

Using the same reason given in (c), Eq. (4.10) implies that

u'(x,y,t;j,k,n) = u*((,y,t;j,k,n) (4.25)

where

u*((,y,t;j,k,n) def n n= _j,k+ (u¢)j,_[(¢- ja¢) - ac(t - t")]

+ (u.)_",_[(y- k_y) - a,,(t - t_)]
(4.26)

Note that Eqs. (4.24) and (4.25) can also be verified directly using Eqs. (4.18), (4.20),

(4.22), and (4.23).

Next, let (i)
def 3At def 3at

U_ -- 2a( a_, and un -- 2Ay an (4.27)
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and (ii)
+ n def A_

= __ n (u,)j,k = T ( ,7)j,k (4.28)(U( )j,k 6 (U¢)J'k' and + n def AT] It n

The coefficients defined in Eqs. (4.27) and (4.28) can be considered as the normalized

counterparts of those defined in Eqs. (4.22) and (4.23). Furthermore, because _x( and ay

are the mesh intervals in the (- and r/- directions, respectively, Eq. (4.27) impfies that

(2/3)v¢ and (2/3)u_, respectively, are equal to the Courant numbers in the _- and 7/-

directions, respectively.

Furthermore, let

and

.(1)4. def (4.29)11 = 1 - v¢ - v, 7

.(1)-4- def :fi(1 - v¢ - u,)(1 + u¢) (4.30)12 ---

if(I):/: def :t:(1 - v¢ - v,)(1 + z%) (4.31)13 =

.(1)4- d.ef
2a = 1 + u¢ (4.32)

(1)4- def
0.22 = T(1 + u¢)(2- v_) (4.33)

.(1)+ def +(1 + u¢)(1 + u,) (4.34)23 =

.0)+ def (4.35)oal = 1 + u, 7

.(1)-I- def -4-(1 + vn)(1 + re) (4.36)32 =

(1)4. Clef
0.3a _ T(1 + un)(2 - "7) (4.37)

.(2)=t= def (4.38)la = 1 + u¢ + t",7

.(2)+ def
,2 = :t=(1 + u¢ + u,7)(1 - u() (4.39)

.(2)4- def
la = _:(1 + ,¢ + v,)(1 - i.,,7) (4.40)

.(2)-4- def
21 = 1 - u; (4.41)

(2)+ d_f +(1 -- u_)(2 + ui) (4.42)0.22 _---

.(2)+ def
23 = _:(1 - u¢)(1 - un) (4.43)

.(2)4. acf (4.44)31 = 1 -u, 7

(2)+ def
0.32 = _:(1 - u,)(1 - r,¢) (4.45)

(2)4- def +(1 - un)(2 + vv)0.33 (4.46)
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Note that:

(a) Each of Eqs. (4.29)-(4.46) representstwo equations. One correspondsto the upper
signs while the other, to the lower signs.

(b) The definitions given in Eqs. (4.29)-(4.37) win be usedin the first marching step of
the 2D a scheme; while those given in Eqs. (4.38)-(4.46) will be used in the second

marching step. It is seen that the expressions on the right sides of the former can

be converted to those of the latter, respectively, by reversing the "+" and "-" signs.

Moreover, for every pair of r and s (r,s = 1,2,3), aOs )- and a(r2s)- are converted to
(2)+ (1)+

cr,s and cr,.s , respectively, if u¢, and u_ are replaced by -uC, and -v,, respectively.

(c) We have

o.(q)-b gr(q) q- gr_q) q-la + 21 + =3, q=l,2 (4.47)

and

o.(q)+ o.(q)+ o-_q)+a2 + 22 +

= Or(q)+ gr_q) + o.(q)'4-13 + -_- 33 : 0, q= 1,2
(4.48)

To simplify the following development, let

(j,k; 1,1) d_d j + 1/3, k + 1/3 (4.49a)

(j,k; 1,2) d_d j_ 2/3, k + 1/3 (4.49b)

(j,k;1,3) de=fj + 1/3, k- 2/3 (4.49c)

(j,k;2,1) de=fj_ 1/3, k- 1/3 (4.50a)

(j, k; 2, 2) def j + 2/3, k - 1/3 (4.5ob)

(j,k; 2,3) deal j _ 1/3, k + 2/3 (4.50c)

Note that (i) (j, k; 1,r), r = 1,2,3, are the spatial mesh indices of points A, C, and E

depicted in Fig. 10(a), respectively, (ii) (j, k; 2, r), r = 1, 2, 3, are the spatial mesh indices

of points D, F, and B depicted in Fig. ll(a), respectively, and (iii) the mesh indices on the

right sides of Eqs. (4.49a,b,c) can be converted to those in Eqs. (4.50a,b,c), respectively,
by reversing the "+" and "-" signs.

Equation (4.11) is evaluated in Appendix B. Let (j,k,n) C f_q with q = 1,2. Then,

for any r = 1,2, 3, the result of evaluation can be expressed as:

q_ n[--(q)+ (q)+ + (q) -4-1 = [ (q) (q)-- + _(q)--A-] n-1/2

io,1 + u¢ + J LG.1 -u + _,2 u¢ + % J(j,k;q,,-) (4.51)
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According to Eqs. (4.29)-(4.31), -(')_= _(1)_= _(1)+
011 , a]2 , and o-13 contain a common factor

(1 - v¢ - un). Similarly, each of three consecutive pairs of coefficients defined in Eqs. (4.32)-

(4.46) also contain a common factor. As a result, if one assumes that (i) 1 - pC - vn # 0,

(ii) l+u¢#0,(iii) l+u n#0,(iv) l+u¢+u_#0,(v)l-ui#0and(vi) 1-u_#0, i.e.,

[i-(_ + ",)_3(1-._)(I-,_)# 0 (4.52)

then the six equations (q = 1,2 and r = 1,2,3) given in Eq. (4.51) can be simplified as

[ ;inu + (1 + v¢)u-_ + (1 + vn)u = sl ') (j,k,n) _ Ftl (4.53)j,k

I
j,k , (j,k,n) E fll (4.54)

. + (1+ ._)u_ - (2- .,)u (')
j,k = 83 ' (j,k,n) E f_, (4.55)

u - (1 - u¢)u_ - (1 - v,7)u + J,a ,

[u + (2 + u¢)u_- -(1 - v,j)u+J '_ = s_2', (j,k,n) C gt2 (4.57)
j,k

and

_1 J j,k

respectively. Here

= s_2), (j,k,n) E _2 (4.58)

and

's_l) def [ V +]n-1/2= u- (1 +v¢)u_" - (1 + ,_)u,7 (j,k;1,1)'

+'t n--1/2

41)do,i_+(2- _)u_ _ (1+ ..)u. J(_,_;1,_)'

(j,k;2,1) '

__ +1 n--l/2

4_)_' [_-(2 + _)_ + (1- ._)_,j(_,_;_,_),

(j, k, n) G _1 (4.59)

(j,k,n) C nl (4.60)

(j,k,n) C D, (4.61)

(j,k,n) C gt2 (4.62)

(j, k, n) C 122 (4.63)

(j,k,n) E _2 (4.64)
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The current 2D a scheme will be constructed using Eqs. (4.53)-(4.58) without assuming

Eq. (4.52). Note that Eqs. (4.53)-(4.58)imply Eq. (4.51) for any u¢ and v,. However, the

reverse is false unless Eq. (4.52) is assumed.

Note that the expressions within the brackets in Eqs. (4.53)-(4.55) and (4.59)-(4.61),

respectively, can be converted to those in Eqs. (4.56)-(4.58) and (4.62)-(4.64) by reversing

the "+" and "-" signs.

It can be shown that Eqs. (4.53)-(4.55) are equivalent to

1[ + + + ]uj,k= _ (1-u i- (1 u()s_ 1) (1 u.)s_ ') (4.65)

= 5 (4.66)

and

+,_ toa+v_ act1( )_, /y,k = s_1) (1) (4.67)

where (j,k,n) C f'tl. Also Eqs. (4.56)-(4.58) are equivalent to

uJ,k='_ 31 [(l+u¢+ u,)s_ 2) + (1 - u¢)s_ 2) + (1 - u,)s_ _)] (4.68)

+ n t_a+_n clef 1 ( )_¢ Jj,k = s__) (4.69)

and

+ n [.a+_n def 1 ( 2))= = 4 (4.70)

where (j, k, n) C f_2.

At this juncture, it should be emphasized that Eqs. (4.65) and (4.68) can be derived

directly from Eq. (4.51). As a matter of fact, with the aid of Eqs. (4.47) and (4.48), we

can obtain Eq. (4.65) (Eq. (4.68)) by summing over the three equations with q = 1 (q = 2)

and r = 1,2,3 in Eq. (4.51).

The 2D a scheme is formed by repeatedly applying the two marching steps defined by

Eqs. (4.65)-(4.67) and Eqs. (4.68)-(4.70), respectively. It has been shown numerically that
?_, 7"$ Tt

it is of second order in accuracy for ud,k, (Ui)j, k and (un)j, k assuming that u_ and u. are

held constant in the process of mesh refinement (note: as a result of Eq. (4.28), the 2D a
scheme is third order accurate for + n(u_)j,k and (u +)_,k). Note that the superscript symbol

"a" in (u i+ _+x'_)j,k and _'7["a+_nlj,kis introduced to remind the reader that Eqs. (4.66), (4.67),

(4.69) and (4.70) are valid for the 2D a scheme. Although the 2D a scheme is constructed

using a procedure very much parallel to that used to construct the 1D a scheme, the former

is more complex than the latter in many aspects. One key difference between these two

schemes is that the 2D a scheme is formed by two distinctly different marching steps while

the 1D a scheme is formed by repeatedly applying the same marching step de6ned by the
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inviscid version of Eq. (2.14) in [2]. It is this difference that, in the 2D case, makes it

necessary to divide the mesh points into two sets f_l and 122.

As a preliminary for the stability analysis of the 2D a scheme given in Sec. 6, for any

(j, k, n) C fl, let
n

¢(j, k,n) dof=

Furthermore, let the six 3 × 3 matrices Q(_q), q = 1,2, and r = 1,2,3, respectively, be

the special cases of those defined in Eqs. (5.18)-(5.23) (see Sec. 5) with e = 0. Then

Eqs. (4.65)-(4.70) can be expressed as

3

g(j,k,n) = Z Q(_q)_(j,k;q,r),n - 1/2), (j,k,n) e __q (4.72)
r= I

Combining Eqs. (4.72) and (4.49a)-(4.50c), one has (i)

-. • ,,-,(1)_(2)-,.. , - 1)q(3,k,n) = Q_I)Q_2)((j + 1,k,n- 1) + t¢ 1 L¢a q(3,x + 1 n

.-.(1).-,(2) -.,. .-,(1).-,(2) -, • 1)+t42 t41 q(3-1,k,n-1)+t42 t¢3 q(3-1,k+l,n-

.-.(1).-.(2) -., • .-.(1).-,(2) -_, •
+tdz t41 q(3, k- l,n-1)+t¢3 _42 q(3 + l,k-1, n-l)

(1) (2) 0(1)0(2) 0(1)0(2) 1)+(Q1 Q1 +,,¢2 ,_2 +.v3 -v3 )¢(j,k,n-

(4.73)

where (j,k,n) E al; and (ii)

,-,(2),-,(1)-.,. , , - 1)¢(j,k,n) = Q_2)Q_I)g(j _ 1,k,n- 1) + _4, t43 q_,.7, x - 1 n

._(2)_(1) _, • ,-,(2),-,(1) -.,.
+t42 (41 q(3 + l,k,n-1)+t42 _43 q(3 + l,k- l,n-1)

_(2).-_(0-.,. -1)+(43 _'2 q(3-1,k+l,n- 1)+ L4z t41 q(3, k + 1,n .._(2).._(1)-,, •

(2) (1) ,.-)(2),,-)(0 ,-)(2)/.)(1) 1)+(Q1 Q1 +'_2 ,_2 +'_z '_z )q'(j,k,n-

(4.74)

where (j, k, n) C f12. Note that (i) Eq. (4.73) relates the marching variables at two adjacent

half-integer time levels; and (ii) Eq. (4.74) relates the marching variables at two adjacent

whole-integer time levels.

The 2D a scheme has several nontraditional features. They are summarized in the

following comments:

(a) As in the case of the 1D a scheme, the 2D a scheme also has the simplest stencil

possible, i.e., in each of their two marching steps, the stencil is a tetrahedron in 3D
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space-time with one vertex at the upper time level and the other three vertices at the
lower time level.

(b) As in the case of the 1D a scheme, each of the six flux conservation conditions asso-

ciated with the 2D a scheme., i.e., those given in Eq. (4.51) (q = 1,2 and r = 1,2,3),

represents a relation among the marching variables associated with only two neigh-

boring SEs.

(c) As in the case of the 1D a scheme, the 2D a scheme also is non-dissipative if it is

stable. It is shown in Sec. 7 that the 2D a scheme is neutrally stable if

[u_[ < 1.5, [un[ < 1.5, and ]u_ +unl < 1.5 (4.75)

As depicted in Fig. 14, the domain of stability defined by Eq. (4.75) is a hexagonal

region in the u(-v n plane. Moreover, it will also be shown later that Eq. (4.75) can be

interpreted as the requirement that the physical domain of dependence of Eq. (4.1)

be within the numerical domain of dependence. Note that the points on the ui-u n

plane that violate Eq. (4.52) form the boundary of a hexagonal region which is entirely

within the stability domain defined in Eq. (4.75). As was emphasized earlier, the 2D

a scheme applies even at these points.

(d) It is shown in [9] that the 2D a scheme has the following property, i.e., for any

(j,k,n) c n,
¢(j,k,n + 1) _ ¢(j,k,n) as at _ 0 (4.76)

if a,, av, w, b, and h are held constant. The 1D a scheme also possesses a similar

property, i.e., Eq. (2.19) in [2]. The above property usually is not shared by other

schemes that use a mesh that is staggered in time, e.g., the Lax scheme [52].

(e) As in the case of the 1D a scheme, the 2D a scheme is also a two-way marching scheme.

In other words, Eqs. (4.53)-(4.58) can also be used to construct the backward time-

marching version of the 2D a scheme. More discussions on this subject are given in
[9].

This section is concluded with the following remarks:

(a) the 2D a scheme is only a special case of the 2D a-# scheme described in [9]. It is a

solver for the 2D convection-diffusion equation

o-5+ a= + - # \ + / = 0 (4.77)

where a_, ay, and # (> 0) are constants. Note that this solver, as in the case of its

1D counterpart, is unconditionally stable if a_ = av = 0.

(b) It should be emphasized that, with the aid of Eqs. (4.17)-(4.20), (4.22), and (4.23),

the 2D a scheme can also be expressed in terms of the marching variables and the

coefficients tied to the coordinates (x,y). In other words, the coordinates (¢,y) are

introduced solely for the purpose of simplifying the current development. The essence

of the 2D a scheme, and the schemes to be introduced in the following sections, is

not dependent on the choice of the coordinates in terms ot" which these schemes are

expressed.
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5. The 2D a-e and a-e-_-/3 Schemes

The 2D a scheme is non-dissipative and reversible in time. It is well known that a non-

dissipative numerical analogue of Eq. (4.1) generally becomes unstable or highly dispersive

when it is extended to model the 2D unsteady Euler equations. It is also obvious that a

scheme that is reversible in time cannot model a physical problem that is irreversible in

time, e.g., an inviscid flow problem involving shocks. As a result, the 2D a scheme will

be extended to become the dissipative 2D a-e and a-e-a-_ scheme before it is extended

to model the Euler equations. As will be shown, the 2D extensions are carried out in a

fashion completely parallel to their 1D counterparts.

5.1. The 2D a-e Scheme

To proceed, note that the CEs for the 2D a-e scheme generally are not those associated

with the 2D a scheme. Here only a single CE is associated with a mesh point (j, k, n) E ft.

This CE, denoted by CE(j, k, n), is the union of CE,.(j, k, n), r = 1,2, 3. In other words,

CE(j,k,n) d¢=f[CEl(j,k,n)] U [CE2(j,k,n)] U [CEz(j,k,n)] (5.1)

Instead of Eq. (4.11), here we assume the less stringent conservation condition

;" .dZ=0 (5.2)
(CE(j,k,n))

Obviously, (i) Ez can be filled with the new CEs, and (ii) the total flux leaving the boundary

of any space-time region that is the union of any new CEs will also vanish.

Moreover, because of Eq. (5.1), Eq. (5.2) must be true if Eq. (4.11) is assumed. As

a matter of fact, a direct evaluation of Eq. (5.2) reveals that it is equivalent to Eq. (4.65)

(Eq. (4.68)) if (j,k,n) C _1 ((j,k,n) E f12). As a result, Eqs. (4.65) and (4.68) are shared

by the 2D a scheme and 2D a-e scheme. Recall that Eq. (2.7) is also shared by the 1D

a and a-e schemes. In this section, using a procedure similar to that which was used

to extend the 1D a scheme to become the 1D a-e scheme, the two marching steps that

form the 2D a-e scheme will be constructed by modifying the other equations in the 2D a

scheme, i.e., Eqs. (4.66), (4.67), (4.69), and (4.70). As a prerequisite, first we shall provide

a geometric interpretation of the procedure by which the second equation of the 1D a

scheme, i.e., Eq. (2.8), was extended to become the second equation of the 1D a-e scheme,

i.e., Eq. (2.13).

The key step in extending the 1D a scheme to the 1D a-e scheme is the construc-

tion of a central difference approximation of Ou/Ox at the mesh point (j,n). The ap-

proximation is given as the fraction within the parentheses on the extreme right side of

Eq. (2.12). Consider a line segment in the x-u space joining the two points (xj_i/2 u TM, j-a/2/
U TMand (xj+a/2, j+l/:J" It is obvious that the above central-difference approximation is the
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value of the slopedu/dx of this line segment. In the following modification, instead of con-

sidering a line segment in the z-u space joining two points, we begin with the construction

of a plane in the _-T/-u space that intersects three given points.

To proceed, for any (j,k,n) C flq, q = 1,2, let

tn def ( At ) n-l�2U(j,k;q,. ) = U -4- _Ut
(j,k;q,r)

r = 1,2,3 (5.3)

By its definition, u(j,k;q,r)tn is a finite-difference approximation of u at ((j, k; q, r), n). With

the aid of Eqs. (4.24), (4.27) and (4.28), Eq. (5.3) implies that

tn n--I/2

(5.4)

For both the case q = 1 (see Fig. 15(a)) and the case q = 2 (see Fig. 15(b)), let P, Q,

and R be the three points in the _-T/-u space with their (i) _- and y-coordinates being those

of the mesh points ((j, k; q, r), n - 1/2), r = 1,2, 3, respectively, and (ii) their u-coordinates

being , nu(j,k;q,, 9 r = 1,2,3, respectively. It can be shown that the plane in the _-T/-u space
that intersects the above three points is represented by

u = (u_)j_,_(_ - jz_) + (u;)i_,k(_ - kay) + (uC)j_,k (5.5)

where

and

3

def 1 , n
(uC)j nk "= 3 E U(j,k;qd ") (5.6)

_- 1

(U()j,kcn de'____(_1) q (,nu,j,k;q,2) __ U(j,k;q,1))In /A_ (5.7)

_ n (_l)q( ,n ,n )(un)j,k aof= U(j,k;q,3 ) -- U(j,k;q,1 ) /A_ (5.s)

The coordinates of the points O and Oc depicted in both Fig. 15(a) and Fig. 15(b)

are (j,a¢,kATi, uj_,_) and (jA¢,kATh(UC)],k), respectively. Here uj_k is evaluated using (i)

Eq. (4.65)if q = 1 and (ii) Eq. (4.68)if q = 2. Equation (5.5)implies that point Oc is on

the same plane that contains points P, Q, and R. Because generally u], k # (u_)j_k, points
O, P, Q and R generally are not on the same plane. Moreover, for every point on the

plane represented by Eq. (5.5),

(0-_) =(u_)j_,k , and (0-_) =(u;)j_,k (5.9)
n <

As a result of the above considerations, and the fact that the spatial projection of the mesh

point (j, k,n) E _q on the (n - 1/2)th time level is the centroid of the triangle formed
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with the mesh points ((j,k;q,r),n - 1/2), r = 1,2,3, one concludes that (uC)j_,k, (u_)j_,k,
[ltc _ nand _ nlj,k are central-difference approximations of u, Ou/O(, and Ou/077, respectively, at

the mesh point (j, k, n).

To proceed, for any (j, k, n) E 12, let

(u_÷ 6 (u_)J'k and /n c+x,_ defb,k" - _", ,j,k = _-("_)_,_ (5.10)

Then the 2D a-e scheme can be defined as follows:

Eq. (4.65) and

and

For any (j,k,n) C _"_1, we assume

+ _ /o -+v_ + + (5.11)(u_)j,_ + 2e u -

+ '_ to _+_'_ _+_ (5.12)(_,)_,_ = _n ,J,_+ 2_(_,+ - an ,j,k

• a+ n {ua+ _nwith the understanding that (u¢),k and _ , Jj,k are those defined in Eqs. (4.66) and
(4.67). On the other hand, for any (_,k,n) E f_2, we assume Eqs. (4.68), (5.11) and (5.12)

with the understanding that _° _+ _'_ and (u _+_"_ Jj,k _ ,7 Jj,k are those defined in Eqs. (4.69) and

(4.70).

With the aid of Eqs. (5.4), (5.7), (5.8), (5.10), (4.66), (4.67), (4.69) and (4.70), it can

be shown that (i)

n l[(u+4u___2u +)n-1/2 _ (u-2u_--2u +_"-a/2 1 (5.13)

and

,_ 1[(-2u_-+4u+) n-1/2 -(u-2u_-2u+] '_-1/2(ltc_ + -- It_+)j,k = _ It (j,k;1,3) /(j,k;1,1)
(5.14)

if (j,k,n) C _; and (ii)

(u_+..+w_ l[(u + 2u-_ + 2u+) '_-1/2 -(u-4u'_ + 2u+) '_-'/2 ]ui ]j,k ---- _ (j,k;2,1) ] (j,k;2,2)J
(5.15)

and

(u_+ _.+_. l[(u+2u__+2u +)_-1/2 _ (u+2u_--4u +]'-1/2 1- % )j,k = _ (j,k;2,a) /(j,_;2,z)J
(5.16)

if(j,k,n) Cft2. Notethat ''c+w_ ,-_+w_ ¢_,c+v_ andto,_+_,_I_ Ij,k, (,_ Ij,k, _,'_zl Ij,k _'*n _j,_ are explicitly dependent

on u¢ and un (and therefore explicitly dependent on At). However, according to Eqs. (5.13)-

(5.16), (_t_ + --" a+'ln and (u_ + __,_+_n_n _J,_ are free from this depenency. Note that a similar_i /j,k
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occurrence was encountered in the construction of the 1D a-e scheme (see the comment

given following Eq. (2.14)).

At this juncture, note that:

(a) The 2D a-e scheme becomes the 2D a scheme when e = 0.

+ n n
(b) For the special case withe = 1/2, Eqs. (5.11) and (5.12) reduce to (uc)j,k = (u_+)j,k

and + _ ¢.c+_n(u,)j,k = t", Jj,k, respectively.

(c) Using the same reason given in the paragraph preceding Eq. (2.14), one may conclude

that numerical dissipation in the 2D a-e scheme may be controlled by varying the

value of e. In fact, it will be shown in Sec. 7 that (i) the 2D a-e scheme is unstable if

E < 0 or e > 1, and (ii) numerical diffusion indeed increases as e increases, at least in

the range of 0 < e < 0.7.

(d) Consider the case (j,k,n) C _,. Then, with the aid of Eqs. (4.28) and (5.13),

Eq. (5.11) can be rewritten as:

n 6 a+ n

e[(6u 2_ _"-'/_
6u

- - ,)

(5.17)

n-al2 , ,n-a/2 _.-a/2 be identified with the values of u, Ou/O(Let (i) u(j,k;,,2), (u¢)(j,k;aa) and (unj(j,k;,,2)

and Ou/Or I at the mesh point ((j, k;1, 2), n -1/2), respectively; and (ii) u(J,k;a,')"-'/2
,,-1/2 , ,_-,/2

u¢)(j,k;a,, ) and _u,7)(j,k;aa) be identified with the values of u, Ou/O_ and Ou/O_ at

the mesh point ((j, k; 1,1),n - 1/2), respectively. Then it can be shown that the ex-

pression within the brackets on the right side of Eq. (5.17) is O(_, zxrl). Furthermore,

because Eq. (4.26) is applicable only for those points (_,_/,t) E SE(j,k,n) only (see

Figs. 10(b) and ll(b)), the expression enclosed within the first bracket on the right

side of Eq. (4.26) is O(/,_, At). From the above considerations, one concludes that

the error of u*(_, 71,t; j, k, n) introduced by adding the extra term involving e on the

right side of Eq. (5.17) is second order in A_, At/, and At. In other words, addition of

the term involving e results in lowering the order of accuracy of (u¢)j_ k but not that

ofu n A similar conclusion is also applicable to Eq. (5.11) for (j,k,n) E _2 and toj,k"

Eq. (5.12) for either (j,k,n) C _, or (j,k,n) E _.

The 2D a-e scheme can also be expressed in the form of Eq. (4.72) if

_¢1) clef 1 (1 -- U¢ -- Un

t2i

1-e

-(1 - u_ - u.)(1 + u_)

-(1 + u¢ - 2e)

-(1 + -

-(1 - v¢ - un)(1 + un) _

-(1 + r,, - 2e)

-(1 + v n -- 2e)

(5.18)

N ASA/TM_ 1998-208843 40



l+u¢

O_,)do=,! -(1 - el
3

0

(1 + u¢)(2 - u_:)

-(2 - u(: - 4e)

0

-(1 + u;)(1 + u,))
1 +u, -2e

0

(5.19)

¢3(1) def 1
'_3 -- 3

l+v.

0

-(1 -_)

-(1 + vn)(1 + re)

0

1 +ui -2¢

(1 + u,)(2 - v.)_

J0

-(2 - u, - 4e)

(5.20)

1 + u,,: + v,

Q_2) aej 1 -(1 - _)
3

-(1 -_)

(1 + ug + u,7)(1 - re)

-(1 - v¢ - 2e)

-(1 - _ - 2{)

(1 + u_ + r%)(1 - uv) _

J-(1 - t% - 2e)

-(1 - v, - 2e)

(5.21)

1 - _( -(1 - .()(2 + _() (1 - _()(1 - .,)_Q_2) a_=f 1 1-e -(2+u;-4e) 1-v,-2¢ ] (5.22)3

0 0 0 /

and

1-u, (1-v,)(1-v¢) -(1-un)(2+un) )

Q_2) a¢=f _1 0 0 0 (5.23)
3

1 - e 1 - v_ - 2e -(2 + v, - 4e)

Note that, with the above definitions, Eqs. (4.73) and (4.74) are also valid for the 2D a-e

scheme.

5.2. The 2D a-e-a-fl Scheme

For the same reason that motivates the extension of the 1D a-e scheme to become the

1D a-e-a-fl scheme, the 2D a-e scheme will be extended to become the 2D a-e-a-fl scheme.

As a preliminary for these extensions, first we shall provide a geometric interpretation of

the procedure by which the 1D a-c scheme was extended to become the 1D a-e-a-fl scheme.

The key step in extending the 1D a-e scheme to 1D a-e-a-fl scheme is the construction

of a nonlinear weighted average of'tu_+)jc+_,_ and (u_ +)_ (see Eqs. (2.56)-(2.61)). Let Pj_ =

N AS A/TM-- 1998-208843 41



(xj-1/2 u ''_ j+l/2J be three points in the x-u, j-a�2), PJ = (xj,u_) and Pj+ = (Xj+l/:,u ''_

space. Then according to Eqs. (2.12) and (2.56), (- c+ _n ,_ c+ _,_ (,,c+V__z--)j , _'_z+ lj and __z jj, respectively,

are equal to the values of the slope du/dx of the three line segments Pj_Pj, PjPj+ and

Pj_Pj+, multiplied by the normalization factor ax/4. Equation (2.57) states that (uz_+)j '_

l-c+_n aLnd {" c+_nis the simple average of \uz+)j _az_)j. Thus one can say that the key step in
extending the 1D a-e scheme to become the 1D a-e-a-_ scheme is the construction o[ the

weighted average of the normalized slopes of Pj_Pj and PjPj+ using the function Wo.

In the construction of the 2D a-e-a-fl scheme, paralleling the evaluation of the values of

du/dx along the three edges of the triangle /kpj_PjPj+ in the x-u space, we shall study

the gradient vectors Vu associated with the four faces of a tetrahedron in the (-7/-u space.

The vertices of the tetrahedron are the points O, P, Q and R depicted in either Fig. 15(a)

or Fig. 15(b). The nonlinear weighted average used in the 2D a-e-a-fl will be constructed

using three of the four gradient vectors referred to above.

To proceed, consider (j,k,n) C f_q. Also let planes #1, #2, and #3, respectively, be

the planes containing the following trios of points: (i) points O, Q, and R; (ii) points O,

R, and P; and (iii) points O, P, and Q. Then; in general, these planes differ from one

another and from the plane that contains points P, Q and R. In the following derivations,

first we shall derive the equations representing the former three planes.

As a preliminary for the developments in this and the following sections, for any real

numbers sl, s2 and s3, let

f_l)(sl,s2,s3 ) dcj -(2s2 + sz)/a_, f(')(s,,s_,s3) d¢.=f--(s2 + 2s3)/,_r] (5.24)

f_)(s,,s_,s_) doj(2s_+ _)/_¢,

f_')(s,,s_, _) _°J(Sl - _)/_4,

f_")(s_,_,_) d_, 2_3(= s2 + s3),

f(2)(sa,s2,s3 ) def 3Sl
2W '

f_3)(s_,s_,s_)dog3s_
2w '

let

g')(s_, s_,s_) doj(3b+ w)s_+ (3b- w)_3
2wh

y_)(s_,s_,s,) _¢J (3b+ w)s, + 2ws_
2wh

f(Z)(sl,s2,s3 ) d¢=f(w - 3b)s, + 2ws2
2wh

In the following, consider a mesh point (j, k, n) e __q (q = 1,2).

def

xr (--1)q(u_,k ,n__ -- U(j,k;q,r))

u(r)hn def S_r)(Xl, X2,_g31, (u(v))jn k def s_r)(_gl, X2, X3)i Jj,k = =

(r),n def z (r),n defu_ )j,_ = Y_(_)(_,_,_), t_ Jj,_ = L(_)(_,_,_)

(5.25)

(5.26)

(5.27)

(5.2s)

(5.29)

For anyr = 1,2,3,

(5.30)

(5.31)

(5.32)
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Then it can be shownthat, for eachr = 1,2, 3, plane # r is representedby

+ n
Uj,k

(5.33)

if the coordinates ((,r/) are used; or by

u = (x - + (y - yj,k)
(5.34)

+ nuj,k

if the coordinates (x,y) are used.

Using Eqs. (5.33) and (5.34), one concludes that, at any point on plane @ r, r = 1,2, 3,

we have

= (It{ )j,k and = tun )j,k
,7 i

and

(0_x) , (_),,_ (0_y) _o (,)v_ (5.36)= (u_)j,k and = t_u _j,k
y x

As a result of Eqs. (5.35) and (5.36), at any point on plane @r, r = 1,2,3, (u(r))_,k and

(,)_
uu )j,k can be considered as the covariant components of the vector X7u with respect to

the Cartesian coordinates (x,y), while (u_'))_,k and (u(n'))_,k are the covariant components

of Vu with respect to the non-Cartesian coordinates (_,7/) [55]. Furthermore, according

to Eq. (5.36), at any point on plane @r, r = 1,2,3, we have

IVul (Or)"
L-- j,k

Note that, by definition, (O,.)j_,k, r = 1,2,3, are scalars. For readers who are not familiar

with tensor analysis, it is emphasized that generally (O,.)j_,k would not be a scalar and

:r u(.) and u_ ") in the sametherefore the first equality sign in Eq. (5.37) would not be valid a_

equation, respectively, are replaced by u_") and u (_).

To proceed further, let

(_)+_n a¢f A_tu(,-)_,_
u_ )j,k = -_t _ Jj,k, (tier)-4-)jn'k def'_A_16(Un(_)_)j,k (5.38)

Then Eqs. (5.7), (5.8), (5.10), (5.24)-(5.26), (5.30) and (5.31) imply that

_¢ Jj,k = _ u +u_ +u J,_
(5.39)
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and

t%7 j,k_'% )j,k= _ u + +u (5.40)

_ 0")+
i.e., (i) u_ + is the simple average of _¢ , r = 1,2,3. and (ii) u,_+ is the simple average of

u(_")+, r = 1,2, 3. Equations (5.39) and (5.40) can be considered as the natural extension

of Eq. (2.57). Note that, for simplicity, in the above and hereafter we may suppress the

space-time mesh indices if no confusion could occur.

(,9+ _n
Note that, as a result of Eq. (5.38), at any point on plane # r, r = 1,2, 3, [u_ )j,k and

(u(_")+)j_,k are the normalized covariant components of Vu with respect to the coordinates

(_,r/). On the other hand, as a result of Eqs. (5.9) and (5.10), at any point on the plane

that contains the triangle APQR, (u_+)j,k and _,c+_,_'_ _'*,1 Jj,k are the normalized covariant

components of Vu with respect to the same coordinates (_,r/). Recall that planes #1,

:/#2, and #3, respectively, are the planes that contain the triangles AOQR, AORP and

AOPQ. The last three triangles and APQR are the four faces of the tetrahedron OPQR.

Thus Eqs. (5.39) and (5.40) state that Vu associated with one face of this tetrahedron is

one third of the sum of Vu associated with the other three faces. This conclusion is true

only because the spatial projection of point O on the plane that contains APQR is the

geometric center of APQR.

To proceed further, given any a > 0, the nonlinear weighted averages (u_'+)y_k and

(u_ '+)j_,k are defined by

0,
U_ + def - "c_ (1)+= (o o3 

if01 =02 =03 =0

, otherwise

(5.41)

and

0,
U_z+ def .... c_ (1)+ - .c_t(3)+= (o2o3)

(OlO ) + +

if01 =02 =03 =0

, otherwise
(5.42)

respectively. To avoid dividing by zero, in practice a small positive number such as 10 -6o

is added to the denominators of the fractions on the right sides of Eqs. (5.41) and (5.42).

Note that, in the above weighted averages, the weight assigned to a quantity associated

with plane # r is greater if 0,. is smaller.

Also note that the above denominators vanish if a > 0, and any two of 01, 02, and

03 vanish. Thus, consistency of the above definitions requires proof of the proposition:

01 = 02 = 03 = O, if any two of 01, 02, and 03 vanish.
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Proof: As an example, let 0a = 82 = 0. Then Eq. (5.37) implies that u (O = u (_) = 0,

r = 1,2. In turn, Eqs. (5.27), (5.28) and (5.32) imply that Xl = x2 = x3 = 0. 8z = 0 now

follows from Eqs. (5.29), (5.32) and (5.37). QED.

As a result of Eq. (5.41), we have

(_)+

ui ,

u_+ (2)+
(z)+

if 01 =0, 02 >0, and 83 >0

if 02 =0, 01 >0, and83 >0

if83 =0, 8a >0, and02 >0

(5.43)

Assuming 8_ > 0, r = 1,2, 3, we have

• _ ,au(3)+

u_ + = (1/01)'_u_ 1)+ + (1/02)'_u_ 2)+ + (1/03) ¢
(1/8a) _ + (1/02) _ + (1/03) _

(5.44)

Thus the weight assigned to u_ _)+ is proportional to (1/8_) _. By using (i) Eqs. (5.39),

_r)+(5.41) and (5.44), and (ii) the fact that u = 0, r = 1,2,3, if 8r = 0, r = 1,2,3, one
arrives at the conclusion that

u_ + = u_ +, if 81 = 02 = 83 (5.45)

Obviously Eqs. (5.43)-(5.45) are still valid if each symbol _ is replaced by the symbol r/.

With the above preliminaries, the 2D a-e-a-fl scheme can be defined as follows: For

any (j,k,n) C ill, we assume Eq. (4.65) and

(+ n [_ a+_n ( + + + -4-( u ¢ ) j,k + 2e u _ j,k j,k
(5.46)

and
+ n [_ a+.ln _ a+_tn n

(u,7)j,k + 2e (u,_ + +/3 (u_ '+ - u_ +) (5.47): _,_*1 ]j,k --art ]j,k j,k

with the understanding that (u_+)j,kn and _nt"a+_nJJ,kare those defined in Eqs. (4.66) and

(4.67). On the other hand, for any (j,k,n) • f_2, we assume Eqs. (4.68), (5.46) and (5.47)

with the understanding that (u_+)jn, k and (u_+)jnk are those defined in Eqs. (4.69) and

(4.70).
At this juncture, note that, on the smooth part of a solution, 0a, 0_, and 0z are nearly

equal. Thus the weighted averages u_ + and u_ + are nearly equal to the simple averages

u_ +, and u,_+, respectively (see Eq. (5.45)). As a result, the effect of weighted-averaging

genera//y is not discernible on the smooth part of a solution.

Finally note that, according to Eq. (5.37), evaluation of (8,) '_ does not involve a

fractional power if a is an even integer. Because a fractional power is costly to evaluate,

use of the a-e-a-�3 scheme is less costly when a is an even integer.
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6. The Euler Solvers

We consider a dimensionless form of the 2-D unsteady Euler equations of a perfect

gas. Let p, u, v, p, and 3: be the mass density, x-velocity component, y-velocity component,

static pressure, and constant specific heat ratio, respectively. Let

U 1 _ p, U 2 = pu, U 3 : p'o,

and

u4 = p/(3'- 1)+ p(u_+ v_)/2

lZ _ U2

f_ = (3: - 1)u4 + (3- 3:)(u2 )2/(2ul ) - (3' - 1)(u3 )2/(2ul )

f_ :U2U3/Ul

f; = 3"U2U4/Ul --(1/2)(3'- 1)U2 [(U2) 2 + (U3) 2] /(Ua) 2

lY--_U3

f_:u_u3/ul

f3y = (3" - 1)u4 + (3 - 3")(u 3 )2/(2_ 1 ) _ (3' __ X)(U 2 )2/(2ua)

fg = 3"u3_4/_,-(1/2)(3"- 1)_3[(uz? + (_3)_]/(u_)_

Then the Euler equations can be expressed as

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

OUm Of,_ i)f_ __ O, m = 1,2,3,4 (6.10)
O----(-+ Oz-z + Oy

Assuming smoothness of the physical solution, Eq. (6.10) is a result of the more funda-
mental conservation laws

m = 1,2,3,4 (6.11)

where

fs(v) ftm • d$= 0,

fZm = (f_,.f_,Um), m = 1,2,3,4 (6.12)

are the space-time mass, x-momentum component, y-momentum component, and energy

current density vectors, respectively.

As a preliminary, let

f_,t d¢f Of_/Oue, and f_,t d_f O.f_/Oul, m,g = 1,2,3,4 (6.13)

The Jacobian matrices, which are formed by f,_,e and rUm,t, m,g = 1, 2, 3,4, respectively,
are given in [9].
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Because f_ and f_m, m = 1,2, 3, 4, are homogeneous functions of degree 1 [53] in ul,

u2, u3, and u4, we have

z and1%=
g----1

4

f_ = E f_ (6.14)rn,t Ul

£----1

Note that Eq. (6.14) is not essential in the development of the CE/SE Euler solvers to be

described in the following subsections. However, in certain instances, it will be used to

recast some equations into more convenient forms.

6.1. The 2D Euler a Scheme

x t), fYm(X,y,t), and f_m(x,y,t), re-For any (z,y,t) C SE(j,k,n), Um(X,y,t), f_( ,y,

spectively, are approximated by u_(x,y,t;j,k,n), f_*(x,y,t;j,k,n), f_*(x,y,t;j,k,n),

and fz*(x,y,t ;j,k,n). They will be defined shortly. Let

u_(x,y,t;j,k,n) de=f(u,_)j_,k + (um_)_,_(x -- xj,k) + (umv)j_,k(y - Yj,k)

+ (Um,)'],k(t - t'_), m = 1,2,3,4
(6.15)

where (um)j_,k, (um,)j_,k, (Umy)jlk , and (Um,)j_,k are constants in SE(j,k,n). Obviously,

they can be considered as the numerical analogues of the values of urn, OUm/OX, OUm/Oy,

and gUm�Or at (xj,k,yj,k, tn), respectively.

n _ n _ ,_ tfv Xn denote the values of f,._, f_ f,_,e, andLet (f,_)j,k, (Ym)j,_, (fm,e)j,k, and , m,tJj,k
U nfY respectively, when urn, m = 1,2,3,4, respectively, assume the values of ( m)j,km,l'

m = 1,2,3,4. For any m = 1,2,3,4, let

4

u= ,e)j_,k( e_)j,k (6.16)
t----1

4

j,k "= ,t ) nj,k(uey)j,k (6.17)Y

l=l

4

(f;,) d_fj,k = ,e)j,k(uet)j,k (6.18)
l=l

4

n _- y n U n(f_)j,k d_f E(fL,e)j,k ( e_)j,k (6.19)
l=l

4

(fYmy)jnk def E(fy m= ,t)y,k(u_v)j_k (6.20)
_=1
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and

Because (i)

4

(/_)j_,kde__(/_ n _ n (6.21)

cOf,_ 4 c3ut
cgx -- _ f ,_,e Ox ' m = 1,2, 3, 4 (6.22)

£-----1

and (ii) the expression on the right side of Eq. (6.16) is the numerical analogue of that

on the right side of Eq. (6.22) at (xj,k,yj,k,t'_), (f_)j_k can be considered as the nu-

merical analogue of the value of Of_/Ox at (xj,k,yj, k,tn). Similarly, (f,_y)j_,k, (f,_)j_,
n y n Y n

(f_t)j,k can(f_)j,k, (f&_)j,k, and be considered as the numerical analogues of the values

of Of,_/Oy, Of,_/Ot, Of_/Oz, Of_/Oy, and gf_/Ot at(xj,k,yj,k,t'_), respectively. As a

result, we define

f_ (x,y,t;j,k,n) def (fm)j,k + (fmz)j,k( x -- Xj,k) A- (fmy)j,k(Y -- Yj,k)

+(f£t)j,k(t-tn), m= 1,2,3,4

(6.23)

and

fy,(x,y,t;2, k,n ) def y n n y n• = (f_)j,k + (f_)j,k(x - xj,k) + (f_mv)j,k(Y - Yj,k)

+ (f_t)j_,t:(t- t_), m = 1,2,3,4

(6.24)

Also, as an analogue to Eq. (6.12), we define

f_(x,y,t;j,k,n) d¢j (f_*(x,y,t;j,k,n),f_*(x,y,t;j,k,n),

u_(x,y,t;j,k,n)), m = 1,2,3,4

(6.25)

n n _ n (f_,e)j,k are functions ofNote that, by their definitions: (i) (f,_)j,k, (f_)j,k, (f,_,l)j,k, and _ n
n z n y n n U n(u,_)j,k , m = 1,2,3,4; (ii) (f,_)j,k and (f_m_)j,k are functions of (um)j,k and ( m_)j,k, m =

1,2,3,4; (iii) (f,_v)j_,k and (f_y)j_,_ are functions of (um)j_,_ and (Umv)j_,_, m = 1,2,3,4;

and (iv) (f_t)jnk and (fYt)jn_ are functions of (um)j_,k and (Umt)jn, k, m- 1,2,3,4.

Moreover, we assume that, for any (x,y,t) _ SE(j,k,n), and any m = 1,2,3,4,

Ou*(x,y,t;j,k,n) Of_m*(X,y,t;j,k,n) Of_*(z,y,t;j,k,n)
+ + :0 (6.26)

Ot Oz Oy

Note that Eq. (6.26) is the numerical analogue of Eq. (6.10). With the aid of Eqs. (6.15),

(6.23), (6.24), (6.16), and (6.20), Eq. (6.26)implies that, for any m = 1,2,3,4,

4

_ )o Zs,_= -(f_)_ J,_ (f_u j,_ = - ,e ue_ + f_ ut u
'_ j,k

_=1

(6.27)
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Thus (umt)j_,k is a function of (Um)j_,k, (Um_)j_,k, and (umy)j_,k. From this result and the

facts stated following Eq. (6.25), one concludes that the only independent discrete variables

needed to be solved for in the current marching scheme are (Urn)ink, (Umz)jn, k, and (Umy)jn, k •

Consider the conservation elements depicted in Figs. 10(a) and ll(a). The Euler

counterpart to Eq. (4.11) is

_s fit* • dg'= 0, r = 1,2,3, m= 1,2,3,4 (6.28)
(CEr(j,k,n))

Next we shall introduce the Euler counterparts of Eqs. (4.22), (4.23), (4.27), and

(4.28). For any (j,k,n) C _, let

( m,_)j,k df T_ 1 _, m,lIj,k

n lfY _n(fm,g)j,k t m,tlj,k

, m,g = 1,2,3,4 (6.29)

and

(umg)j,k da T t ( m.)j,k= , m = 1,2,3,4 (6.30)

The normalized counterparts of those parameters defined in Eqs. (6.29) and (6.30) are

,c(+ _n def 3At . ( n and (fv+ n def 3At n
m,l)j,k- 2Ar/(fm,t)j,k (6.31)

and

+ n clef __X_( (6.32)and (um,7 ) j, k = Um, )_],k
0

In the following development, for simplicity, we may strip from every variable in an

equation its indices j, k, and n if all variables are associated with the same mesh point

(j,k,n) C ft. Let F <+ and F '7+, respectively, denote the matrices formed by f<+m,tand

,/+
fro,e, m,g = 1,2,3,4. Let I be the 4 × 4 identity matrix. Then the current counterparts

to Eqs. (4.29)-(4.46) are

_(l)d= de._fI -- F <+ - F n+
11 --

E(1)+ d_J +(I -- F ¢+ - F'7+)(I + F _+)12 --

E(1)+ da ±(1 -- F i+ - F"+)(I + F "+)13 ----

_(1)-t- def I + F _+
21 ----

_(1)-4- def= T(I+F <+)(2I-F <+)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)
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and

B(l)+ dej +(I + F¢+)(I + F p+)23 --

y] ( 1)-4- def Fp +3a = I+

E(_)+ dcJ +(I + FP+)(I + F ¢+)32 --

_](1) =i= def3z = T(I + FP+)(2I - F p+)

_](2)± def F¢ + Fp +11 = I+ +

E(2)-I- def F¢ + FC+)12 = 7=(I + + F p+)(I -

_-](2) ± def F_ + Fp+)13 = T(I + + FP+)(I-

)-](2)-4- def21 = I - F c+

_](2)=i= deJ +(I -- F¢+)(2I + F ¢+)22 --

_](2)+ def23 = T(I-F ¢+)(I-F p+)

_(2):k clef Fp +31 = /--

_(2)-4- def32 = m(I-f p+)(I- F +)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

_(2)=t= dej ±(I- FP+)(2I + F p+) (6.50)33 --

Note that Eqs. (4.29)-(4.46) become Eqs. (6.33)-(6.50), respectively, under the following
substitution rules:

§1: 1, pC, and vp, be replaced by I, F _+, and F '7+, respectively.

§2: a (q)+ be replaced by g](q)-]-"-','s , q = 1,2 and r,s = 1,2,3, respectively.

As will be shown, under the above and other rules of substitution to be given later, many

other equations given in Secs. 4 and 5 can be converted to their Euler counterparts given

in this section. The latter will be referred to as the Euler images of the former.

Equation (6.28)is evaluated in Appendix C. Let (j,k,n) E _q. Let if, fit, ff_-, and if+,

u + andu+p,m=l 2,3,4.respectively, be the 4 × 1 column matrices formed by urn, umt, me,

Then, with the aid of Eq. (6.14), for any pair of q and r (q = 1,2 and r = 1,2,3), the

results with m = 1,2, 3, 4 can be combined into the matrix form

[y](q)+ _ _--_(q)+ 4+ ___(q)+ ..,+] n [ (q)_ _ ___(q)_ "*+ _._(q)_ _,+] n--l/2
rl U "-[- 2at, 2 U c -_- 2..ar3 Up J j,k = Y]S'I U -_- 2.at2 U c @ 2.at3 Up J (j,k;q,r)

(6.51)

Eq. (6.51) is the Euler image of Eq. (4.51) under the substitution rules §2 and

§3: u, u_, u_-, and u + be replaced by if, fit, ff_-, and if+, respectively.
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As a result of Eqs. (6.33)-(6.50), we have

E_ )+ + E_q)± + E_ q)± = 31, q = 1,2 (6.52)

and

_)±+_q)±+_)± = _)± +r_?)++_)± =o, q = 1,2 (6.53)

Equations (6.52) and (6.53) are the Euler images of Eqs. (4.47) and (4.48), respectively.

For either q = 1 or q = 2, by summing over the three equations r = 1,2,3 given in

Eq. (6.51), and using Eqs. (6.52) and (6.53), one concludes that, for any (j,k,n) E 12q,

1 3 [ x-_(q)- -_+ x-a(q)- --4-] n--l�2

r'_- 1

, q= 1,2 (6.54)

As a result, ff_,k can be evaluated in terms of the marching variables at the (n - 1/2)th
time level.

Note that, with the aid of Eqs. (6.33)-(6.50), Eq. (6.54) can be expressed explicitly as

1[ .... ,_-1/2 ]uj, k _ (I-Fi+-F'+) "-I/2 g(')+(l+ + += y._) -(')(1 F,+).-1, _(,)
(j,k;1,1) (j,k;1,2) 32 (j,k;1,3) _3

(6.54a)

if (j,k,n) C f_l; or

1 [ F_ + .... r_--l/_ _2) (I F<+'_'_-a/2 -.(2) (I pn+]n-a/2 2)]-'_ -- F"T) + -- /(j,k;2,2) S2 + ---- _(j,k;2,3) YZ(uj, k - _ (I + + (j,_;2,1)

(6.54b)

if (j,k,n) E 122. Here (i)

,n-a/2
(6.55)

"°z +(:,-F<+) -(,+F,+)
(j,_;_,2)

and

[Y'(*)ad_f=if--(I + F<+)ff? + (21- F'+)ff (j,k;a,a)

with (j,k,n) C fta; and (ii)

(6.56)

(6.57)

g}2) d,f [if+ (I-- F<+)ff_ - + (I- F _+) .+]n-*/_
= lt_/ J (j,k;2,1)

(6.58)

(6.59)
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and

[-_(2) acf (I F¢+) ff¢+ (21 + Fn+) ff (6.60)
s3 = ff + - - (j,k;2,3)

with (j,k,n) E f_2. Eqs. (6.54a)-(6.60) are the Euler images of Eqs. (4.65), (4.68) and

(4.59)-(4.64), respectively, under the substitution rules §1, §3 and

§4: s (q) be replaced by _'(q), q = 1,2, and r = 1,2,3, respectively.

( y]( q )'+ "_nFor any (j,k,n) C _q, the matrices _ _a Jj,k, r = 1,2,3, are known functions of

_j,k" Thus they can be evaluted after the latter is evaluated using Eq. (6.54). Assuming

the existence of the inverse of each of the matrices [_(q)+ n_1 )j,k (see Appendix D.3 for an

existence theorem), it follows that one can also evaluate S(q) (q = 1,2 and r = 1,2,3)
where

[( )]1£(q)do2 s_i)+ j,k × L_,, u+ _ u¢ + '_3 u, j(_,k;q,, (6.61)

Note that, in this paper, the inverse of a matrix A is denoted by [A] -1.

At this juncture, note that s(q) can be evaluated by a direct application of Eq. (6.61),

if one does not mind inverting the4x4 matrices - -(z(q)+_n . Alternatively, for each pair
\-/ j,k

of q and r, one may use the method of Gaussian elimination to obtain the 4 × 1 column

matrix s(q) as the solution to the matrix equation

(y](q)+) n _(q) [x--_(q)-- _ w(q)-- -*+ x-._(q)--_+] n-l/2
j,k = [z_. 1 u + 2_,,.2 u¢ + z_,. 3 un ](j,k;q,,) (6.62)

Furthermore, by multiplying Eq. (6.51) from the left with

repeatedly with all possible pairs of q and r, and using Eqs. (6.33)-(6.50) and (6.61), one
has [9] (i)

[if+ (I+ F¢+)ff_ - + (I+ Fn+)ff+] n = _(a) (6.63)
]j,k

j,k

and

n ---- _(1)(i+F,+) -(2i- F,+)
where (j,k,n) C n_; and (ii)

(6.65)

=
j,k _'1

(6.66)
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n = _(2) (6.67)

and

[_- (I- F_+)_? + (21+v,+)_+1" = _?)
_? Jj,k

(6.68)

where (j, k, n) C f_2.

Note that, with the aid of Eqs. (6.33), (6.36), (6.39), (6.42), (6.45), (6.48) and (6.61),

Eq. (6.54) can also be expressed as

uj_,k = _ I - F _+ j,k + + ) j,k + + J j,k
(6.69)

if (j,k,n) E _'_1; or

_[( r'+ F,+)° _) (I F,+__ _?) (i r,+__ _?)] (6.70)uj, k = _ I+ + j,k + - J i,k + - J j,k

if (j, k,n) E f12. Furthermore, by subtracting Eqs. (6.64) and (6.65), respectively, from

Eq. (6.63), one obtains

rt i_Ta+'_ n def 1 (gl(1) _2(1)) (6.71)
; /j,k = _'_ Jj,k = 5

and

o - (e,, )(ff+)j,k = (ff_n+)J, k d¢f 1 a)_ _(1) (6.72)-5

respectively, where (j,k,n) C 12_. Next, by subtracting Eq. (6.66) from Eqs. (6.67) and

(6.68), respectively, one obtains

ff j,k = (ff_+)j,k def_31 2) 2) (6.73)

and

(u, )j,_= ,_, ,j,k= 5
respectively, where (j, k,n) C 9t2.

Note that, under the substitution rules §1, §3,

§5: u_ + and u_ + be replaced by ff_+ and ff_+, respectively.

§6: s (q) be replaced by S(q), q = 1,2, and r = 1,2,3, respectively.

Eqs. (6.63)-(6.74) are the Suler images of nqs. (4.53)-(4.58), (4.65), (4.68), (4.66), (4.67),

(4.69) and (4.70), repectively.

The 2D Euler a scheme is formed by repeatedly applying the two marching steps

defined, respectively, by (i) Eqs. (6.54a), (6.71) and (6.72); and (ii) Eqs. (6.54b), (6.73)
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and (6.74). Note that: (i) becauseif(q) can not be evaluated without _j,k being known

first, one cannot evaluate ff_j,_ using Eqs. (6.69) and (6.70); and (ii) the 2D Euler a scheme

is a two-way marching scheme in the sense that the conservation conditions Eq. (6.28) can

also be used to construct its backward time marching version.

At this juncture, note that the 2D Euler a scheme is greatly simplified by the fact that

ff_j,k can be evaluated explicitly in terms of the marching variables at the (n - 1/2)th time

tz(q)+_nlevels using Eq. (6.54). As a result, the matrices _ ,-s Jj, k, which are nord/near functions

of ff_,k, can be evaluated easily. In other words, nonlinearity of the above matrix functions

does not pose a difficult problem for the 2D Euler a scheme.

To explain how Eq. (6.54) arises, note that, because of Eq. (5.1),

_s (j,k,n) C f_ (6.75)d =0,
(eE(j,k,n))

is the direct result of Eq. (6.28), the basic assumptions of the 2D Euler a scheme. According

to Eq. (5.1), CE(j,k,n)is the hexagonal cylinder A'B'C'D'E'F'ABCDEF depicted in

Figs. 10(a) and ll(a). Except for the top face A'B'C'D'E'F', the other boundaries of this

cylinder are the subsets of three solution elements at the (n - 1/2)th time level. Thus, for

any m = 1,2, 3, 4, the flux of ft_ leaving CE(j, k, n) through all the boundaries except the

top face can be evaluated in terms of the marching variables at the (n - 1/2)th time level.

On the other hand, because the top face is a subset of SE(j, k,n), the flux leaving there is

a function of the marching variables associated with the mesh point (j, k, n). Furthermore,

because the outward normal to the top face has no spatial component, the total flux of

ft* leaving CE(j, k, n) through the top face is the surface integral of u_ over the top face.

Because the center of SE(j,k,n) coincides with the center of the top face, it is easy to

see that the first-order terms in Eqs. (6.15) do not contribute to the total flux leaving the

top face. It follows that the total flux leaving the top face is a function of (um)j_,k only.

As a result of the above considerations, ff_,k can be determined in terms of the marching

variables at the (n- 1/2)th time level by using Eq. (6.75) only. Equation (6.54) is the

direct results of Eq. (6.75).

Because implementation of the 2D Euler a scheme requires, at each mesh point

(j,k,n) E f_, the solution of the three matrix equations (corresponding to r = 1,2,3)

given in Eq. (6.62), the scheme is referred to as locMly implicit [1, p.22]. A simplified and

completely explicit version of it will be described immediately.

6.2. The Simplified 2D Euler a Scheme

Eq. (6.75) is assumed in the 2D Euler a scheme. As a result, Eq. (6.54) is also

applicable to the new scheme.

To construct the rest of the simplified scheme, note that, with the aid of Eqs. (6.33)-

(6.50), a substitution of the approximations

(q)+ n-a/2
(_.1)j,k(q)+n _"_ (_rl)(j,k;q,v) (6.76)
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into Eq. (6.61) revealsthat

,_(q) _,_ _(q), q = 1,2; r = 1,2,3 (6.77)

where _'_(q) are defined in Eqs. (6.55)-(6.60).

As a result of Eq. (6.77), Eqs. (6.71) and (6.72) can be approximated by

ff j,k t_ ]j,k ---- _ -- 82
(6.78)

and

_+ n ' n defi (_._1) g(1)) (6.79)

respectively, where (j,k,n) C _1. Similarly, Eqs. (6.73) and (6.74) can be approximated

by
n

( 80)
and

= (ff_ +)jn, k def 1 2) 2)

' n def 1 (_2) _.}2))
-*a+

= (u,, = -3(__+_n (6.81)

respectively, where (j, k, n) C _2.

Note that Eqs. (6.78)-(6.81) are the Euler images of Eqs. (4.66), (4.67), (4.69) and

(4.70) under the substitution rules §3, §4 and

_'+ and :a'+ respectively.§7: u_ + and u_ + be replaced by u; % ,

The first marching step of the simplified 2D Euler a scheme is formed by Eqs. (6.54a),

(6.78) and (6.79). The second marching step is formed by Eqs. (6.54b), (6.80) and (6.81).

Moreover, because every $_(q) (and thus every (_'+)Y,k and (ff_'+)Y,k with (j,k,n) e _t)

can be evaluated without solving a system of equations, the simplified version is compu-

tationally more efficient than the original scheme.

6.3. The 2D Euler a-e Scheme

Eq. (6.75) is assumed in the 2D Euler a-e scheme. As a result, Eq. (6.54) is also

applicable to the new scheme. As will be shown shortly, by considering their component

equations separately, the vector equations that form the rest of the 2D Euler a-e can be

developed in a fashion similar to that which was used to develop the 2D a-e scheme.

Let (j,k,n)• _q and consider any m = 1,2,3,4. Let (u')(_j,k;q,,), (u_)j_ k, (u_i)j_,

and (u_,7) n be defined by a set of equations identical to Eqs. (5.3) and (5.6)-(5.8) exceptj,k
u _ _ in the latter equations are replaced, respectively,that the symbols u', u, ut, , u_ and u,

,a Iby the symbols (m), urn, Umt, U_, U_i and u_n in the former equations. Let Pro, Qm and

Rm (see Figs. 16(a) and 16(b)) be the three points in the _-r/-u space with (i) their _- and

rkcoordinates being those of the mesh points ((j, k; q, r), n - 1/2), r = 1,2, 3, respectively,
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! n

and (ii) their u-coordinates being (um)(j,k;q,_), r = 1,2,3, respectively. It can be shown
that the plane in the _-r/-u space that intersects the above three points is represented

by an equation that is identical to Eq. (5.5) except that the symbols u c, u_ and u_ in

Eq. (5.5) are now replaced by u_, u_¢ and u_n , respectively. As a result, for every point

on the plane referred to above, we have two relations that are identical to those given in

Eq. (5.9) except that the symbols u_ and u_ in Eq. (5.9) are now replaced by u_¢ and u_n,

respectively. Furthermore, let t'%_fJj,k/"c+ _,_ and _tuC+mnJj,k_nbe defined using an equation that is

identical to Eq. (5.10) except that the symbols u_ +, u_, u,_+ and u_ in the latter equation

are replaced, respectively, by the symbols U_n+¢,U_¢, U_n and u_n in the former equation.

--*C --*C

Moreover, let u', ff_ u¢, un, ff_+ and ff,_+, respectively, denote the 4 x 1 column

matrices formed by ' ¢ _um, Urn, Um¢ , Umn , U_+¢ and u_n , m = 1,2,3,4. Then, with the aid of
the relation

at

which follows from Eqs. (6.27), (6.29), and (6.30), it becomes evident that we can obtain a

set of equations that are the Euler images of Eqs. (5.3), (5.4), (5.6)-(5.8), and (5.10)-(5.12)

under the substitution rules §1, §3, §5 and

§8: u', u c, u_, u;, u_ + and u; + be replaced by if', ff_, ff_, ff,_, ff_+ and ff,_+, respectively.

Note that the Euler images of Eqs. (5.13)-(5.16) under the substitution rules §3, §5

and §8 are not valid for the current scheme because (i) to_+_n and t_+_nt_ Jj,k _n Jj,k are defined
t a+'_n [.,,a+'lnin terms of ff_(q), q = 1,2, r = 1,2,3 (see Eqs. (6.71)-(6.74)), while (_¢)j,k and _n Jj, k

are definedin terms of4 q = 1,2, = 1,2,3 (seeEqs. (4.66), (4.67), (4.69), and (4.70));

and (ii) s(q), which were defined by Eq. (6.61), are structually different from s_q_, which

were defined by Eqs. (4.59)-(4.64). However, as will be shown shortly, the Euler images of

Eqs. (5.13)-(5.16) under the substitution rules §3, §7 and §8 do exist.

For future reference, several key equations associated with the 2D Euler a-e scheme

will be given explicitly. They are:

-an def __ Fr/+ u: ) n--l/2u(/,k;q,_) = if+ --fit = [ff 2
2 ) (j,k;q,,-)

(6.83)

and

(_.-*c+_n def (--1) q [--*in -*tn "_

_ lj,k -- -6- k u(j'k;q'2) -- U(j'k;q'l))

[,,-TC+,_n def (--1) q f--,,n --,tn "_

-- _ U(j,k;q,1 )_,_ lj,k 6 _ u(j'k;q'3) )

:o+,o/ j,k = _tt_ )j,k q- 2e(_ + - '_ )j,k

--,+ n
t,'_rl ]j,l¢ + u"n lj,k

(6.84)

(6.85)

(6.86)

(6.87)
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where (j,k,n) C f_q, q = 1,2. The 2D Euler a-e scheme is formed by Eqs. (6.54), (6.86)

and (6.87) for any (j,k,n) e f_q.

6.4. The Simplified 2D Euler a-e Scheme

The defining equations of the simplified 2D Euler a-e scheme are identical to those of

the 2D Euler a-e scheme except that Eqs. (6.86) and (6.87) should be replaced by

and

(ff+)n t_'+_n 2e(ff_+ -*a'+,ni j,k = _'_ )j,k + -u< ILk

n ..._t n ""*a t n(u,+b,_ --(u, +)j,_ + 2_(_C - u, +)j,_

respectively.

(i)

(6.88)

(6.89)

Moreover, with the aid of Eqs. (6.78)-(6.81) and (6.83)-(6.85), it can be shown that

and

(_+ --_ "+)ink --- 6 (U'_- -- '* /(j,k;1,2) (j,k;1,1)J

(_+ -_'+ n 1
-- U_ )j,k =

if (j,k,n) C fla; and (ii)

(_+ -_'+ n 1-u< )j,k=

and

[(if- 2ff_ + 4ff+_ "-'12" I (j,k;1,3)
(j,k;a,1)] (6.91)

[ ('1_ -t'- 2"1_ I- -{- 2"1_':) n-l/2(j,k;2,a) \u. \n--1/2 "]
- (_7- 4ff + + 2ff +) / (6.92)

" / (j,k;_,2)J

, _ 1[( 2ff_ 2ff+] n-l/2(_+-_+)j,_= _ Lt,z+ + q /(j,k;2,1)

if (j, k, n) C f/2.

\n--112 ]

\(ff + 2ff_- - 4ff + ) I
"' / (j,k;2,3)J

(6.93)

Note that, under the substitution rules §3, §7 and §8, Eqs. (6.90)-(6.93) are the Euler

images of Eqs. (5.13)-(5.16), respectively. Also note that (fi*_+)j,kn, tui"-_'+_'_)j,k,t'_,Tt_'_+_nsj,kand

(ff_'+)j_,k are explicitly dependent on F i+ and F n+ (and, as a result of Eq. (6.31), also

explicitly dependent on At). However, according to Eqs. (6.90)-(6.93), (_+ - ff_'+)j_,k and

(_+ -'o'+- un )ink are free from this depenency.

6.5. The 2D Euler a-e-a-fl Scheme
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In this subsection, the techniquesusedin constructing the 1D Euler a-e-a-_ scheme

and the 2D a-e-a-_ scheme will be combined and used to construct the 2D Euler a-e-a-_
scheme.

To proceed, for any (j,k,n) C _'_q, any m = 1,2,3,4, and any r = 1,2,3, let

Zm, r = (--1 Urn)j,k __ (U m, )n(j,k;q,v) (6.94)

(u(,.).Ln def _,.) Zm,3), (u_))j,k de' f(")(Xrn,,,Xm,2,Zm,3) (6.95)m(lj,k = f (Zm,l,2_m,2, n =

( (.)._ def _) _ f(u")(Xm,a,Xm,2,Xm,3) (6.96)

where f_"), f("), f("), and fO') are the functions defined in Eqs. (5.24)-(5.29). Note that

Eqs. (6.94)-(6.96)are the Eulercounterpartsof Eqs. (5.3O)-(5.32),respectively.
To proceed further, for either (j, k, n) C __1 or (j, k, n) _ _2, consider any ]fixed value

of m = 1,2,3,4. Let Pro, Qrn and Rm be the three points defined in Sec. 6.3. Let

Om (see Figs. 16(a) and 16(b)) denote the point in the _-r/-u space with the coordinates

(ja_, kay, (Um)_,k). Let planes #1, _2, and #3, respectively, be the planes containing the

following trios of points: (i) points Om, Qrn, and Rrn; (ii) points Om, Rm, and Prn; and

(iii) points Orn, Prn, and Qm. Then it can be shown that, for each r = 1,2,3, plane #r is

represented by an equation that is identical to Eq. (5.33) except that the symbols u_ "), u(__),

and u on the right side of Eq. (5.33) are now replaced by u(,:_, -umn,(') and (Urn), respectively.

Alternatively, the plane # r can be represented by another equation that is identical to

Eq. (5.34) except that the symbols u ('), u (O, and u on the right side of Eq. (5.34) are now

replaced by u (')m_, amy,-(_) and (urn), respectively. As a result, for every point on the plane

# r, we have a set of relations that are identical to those given in Eqs. (5.35) and (5.36)

except that the symbols u_ "), u (_), u(_"), and u_ _') in the latter equations are now replaced

by U(m_, U(')rnn,U(')rn*,and U (r)my, respectively. It follows that, at any point on plane # r, we
have

Iwl = (ore,)nj,k = u 2 + _ rnu)2 (6.97)
j,k

Furthermore, let

(U(r)+_n def A_/U(r )_n

rn( Jj,k = 6 _ m¢lj,k,
(U(r)+_n def A_(U(r) _n

mrl }j,k = 6 mrll3'k
(6.98)

Then Eqs. (6.84), (6.85), (5.24)-(5.26) and (6.94)-(6.96) imply that

(u_+ _ 1 [ (1)+ (2)+ _ (3)+] n

m Jj,k = + + %< Jj,k (6.99)
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and

(.¢+sn 1 [ _(2)+ _(3)+]n (6.100)

i.e., (i) u_n-_ is the simple average of u_ +, r = 1,2,3; and (ii) u_ + is the simple average

of u (_)+,,_n , r = 1,2,3. Equations (6.97)-(6.100) are the Euler counterparts of Eqs. (5.37)-

(5.40), respectively.

With the above preliminaries, it becomes obvious that u_ and umnW+,respectively the

present counterparts of the weighted averages u_ + and u_ '+ defined in Eqs. (5.41) and

(5.42), should be defined by

0,
u:_ _°d (em=e=3)o_2_++(em3em_)o_ ++(e_,e=_)o u_;(3)+

(0rnl0m2) ct -4-(0m20m3) _ _- (0m30_1)"

and

if Sml =0_2 =0_3 = 0

, otherwise

(6.Ioi)

w+ def {
Umn

0_

(Om2Orn3)a (1)+q_(Om3Oml)Ct (2)÷___(OrrtlOrn2)c_ (3)+_mn Umn Umn

ifOml=Om2=Om3= 0

, otherwise

(6.102)

respectively. Note that, to avoid dividing by zero, in practice a small positive number such

as 10 -6o is added to the denominators in Eqs. (6.101) and (6.102).

Let ff_+ (ff_'+) be the column matrix formed by u_-_ (u,_+), m = 1,2,3,4. Then, for

any (j, k, n) E f_, the 2D Euler a-e-a-fl scheme is defined by Eq. (6.54) and

(6.103)

and

_=n _,_ _, ,J,_ --z, + _,+-J,_5(Y

where e and/3 are adjustable parameters.

6.6. The Simplified 2D Euler a-e-a-_ Scheme

and

and

(6.104)

For any (j, k, n) C f_, the simplified 2D Euler a-e-a-fl scheme is formed by Eq. (6.54)

l_ { _,-?a'+ _n + _.-_' + "tn + _c+ _n= ,,'_¢ /j,k + 2e(_ - '_¢ ,j,t + fl(u_' - '_¢ )j,k (6.105)
j,k

_+ n (.,-,u'+_n + _.-:,u'+xn + _,-*c+_n
(_,),,_ ,_, ,J,_+ 2_(_, - + _(_= u n )j,k _ -- '*77 lj,k (6.106)
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where e and _3 are adjustable parameters.

6.7. The 2D CE/SE Shock-Capturing Scheme

Let e = 1/2 and fl = 1. Then the 2D Euler a-e-a-/3 scheme and the simplified 2D Euler

a-e-(_-_ scheme reduce to the same scheme. For any (j, k, n) E f_, the reduced scheme is

formed by Eq. (6.54) and

(¢+)n (=w+,,_ (6.107)
j,k

and
4+ n

(Url ) j,k z [ "w+ _n (6.108)

The above scheme is one of the simplest among the 2D Euler solvers known to the authors.

The vMue o/'a is the only adustable parameter allowed in this scheme. Because this scheme

is the 2D counterpart of the 1D CE/SE shock-capturing scheme and shares with the latter

all the distinctive features described in Sec. 2.8, it will be referred to as the 2D CE/SE

shock-capturing scheme.
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7. Stability

In this section, stability of the 2D a and a-e schemes will be studied using the yon

Neumann analysis. Note that Eqs. (4.73) and (4.74) are valid for these two schemes if

the matrices Q(,.q) (q = 1,2 and r = 1,2, 3) are defined using Eqs. (5.18)-(5.23) with the

understanding that e = 0 should be assumed for the 2D a scheme.

To proceed, let

M(I)(0_,0_) d,.f Q_Z)e(,/3)(o,+o,) + Q_1)e(i/a)(_ao,+o,) + Q_I)e(i/3)(0(_20,)) (7.1)

and

M(:)(O_,O,7) dj Q_2)e_(i/3)(o_+o,, > + Q_2)e_(i/3)(_:o_+o.,) + Q_)e_(i/z)(o__2o,> (7.2)

Furthermore, for all (j, k, n) C _, let

¢(j,k,n) = ¢*(n,O(,O,7)e i(j°'+k°'), (i def V/Z_I, --rr < 0¢,0, 7 < rr) (7.3)

where ¢*(n,O(,O,_) is a 3 x 1 column matrix (see Sec. 4 in [1]). Substituting Eq. (7.3) into

Eqs. (4.73) and (4.74), one concludes that: (i)

¢'(n + rn, O_,O,7)= [M(z)(O(,O,7)M(2)(O(,O,7)]m('(n,O(,O,_) (7.4)

where n = il/2,±3/2,±5/2,..., and rn = 0,1,2,...; and (ii)

(*(n + m,0¢,0,1) = [i(2)(O(,On)i(a)(O_,On)]m_*(n,O_,O,7) (7.5)

where n = 0,+1,±2,..., and rn = 0,1,2, .... Equation (7.4) implies that the am-

plification matrix among the half-integer time levels is M(a)(0¢, 0,7)M(2)(0_,0, 7); while

Eq. (7.5) implies that the amplification matrix among the whole-integer time levels is

M(2)(0¢, 0n)M(1)(0¢, 0,).

Let A and B be two arbitrary n x n matrices. Then AB and BA have the same

eigenvalues, counting multiplicity [54, p.53]. Thus the 3 x 3 amplification matrix among

the half-integer time levels and that among the whole-integer time levels have the same

eigenvalues. These eigenvalues may be referred to as the amplification factors. The ampli-

fication factors are functions of phase angles 0( and 0,. In addition, they are functions of a

set of coefficients that are dependent on the physical properties and the mesh parameters.

These coefficients are (i) u( and u, for the 2D a scheme; and (ii) t,_, r%, and e for the 2D

a-e scheme. Let X1, X2, and A3 denote the amplification factors. In the current stability

analysis, a scheme is said to be stable in a domain of the above coefficients if, for aH vaJues

of the coeftlcients belonging to this domain, and a11 O( and O,7 with -Tr < 0¢, 0 n <_ _',

IA I5 1, I),_1 <- 1, and [$a[ _< 1 (7.6)
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Consider the 2D a scheme. By using its two-way marching nature and the fact that

its stencil is invariant under space-time inversion, it is shown in [9] that, for any given u_,

v,, 04, and 0,,

[A,A_A31 = 1 (7.7)

It follows from Eqs. (7.6) and (7.7) that the 2D a scheme must be neutrally stable, i.e.,

I)h] = IA2I = [A31 = 1, -_ < 0<,0 n _< _r (7.8)

if it is stable. In other words, the 2D a scheme is non-dissipative if it is stable. Moreover,

a systematic numerical evaluation of Aa, )_2, and A3, for different values of v¢, Vn, 0<, and

0,7, has confirmed that the 2D a scheme is indeed neutra//y stable in the stability domain

defined by Eq. (4.75). In the following, we shall discuss the meaning of this stability
domain.

Let (j,k,n) E _. According to Eqs. (4.73) and (4.74), the marching variables at

the mesh point (j, k, n) are completely determined by those of seven mesh points at the

(n - 1)th time level (i.e., the mesh point (j,k,n - 1), and points A, B, C, D, E and F

shown in Figs. 17(a) and 17(b)). As a result, in this paper, the interior and boundary of

the hexagon ABCDEF shah be referred to as the numericM domain of dependence of the

mesh point (j,k,n) at the (n - 1)th time level Note that the dashed lines depicted in

Figs. 17(a) and 17(b) are the spatial projections of boundaries of CEs.

The 2D a scheme is designed to solve Eq. (4.1). For Eq. (4.1), the value of u is

a constant along a characteristic line. The characteristic line passing through the mesh

point (j,k,n) will intersect a point on the plane t = t n-1. The point of intersection,

referred to as the backward characteristic projection of the mesh point (j, k,n) at the

(n - 1)th time level, is the "domain" of dependence at the (n - 1)th time level for the

value of u at the mesh point (j,k,n). It is shown in Appendix D.1 that the backward

characteristic projection is in the interior of the numerical domain of dependence if and

only if Eq. (4.75) is satisfied.

At this juncture, note that the concept of characteristics was never used in the design

of the 2D a scheme. Nevertheless, its stability condition is completely consistent with the

general stability requirement of an explicit solver of a hyperbolic equation, i.e., the analytic

domain of dependence be a subset of the numerical domain of dependence.

Next we consider the stability of the 2D a-e scheme. Recall that the 1-D a-e scheme

is not stable for any Courant number u if e < 0, or e > 1 [2]. Similarly, the results of

numerical experiments indicate that the 2D a-e scheme is not stable in any domain on the

u<-u n plane if e < 0 or e > 1. For any e with 0 < e < 1, the 2D a-e scheme has a stability

domain on the u(-u_ plane. The stability domains for several values of e were obtained

numerically. As shown in Figs. 18(a)-(c), these domains (shaded areas) vary only slightly

in shape and size from that depicted in Fig. 14. They become smaller in size as e increases.

Given any pair of ui and an, A1, A2 and A3 are functions of 0 i and 0n. Let (i)

IA31_ IA2I _< IAal _< 0, -_ < 0<,0, 7 < 7r (7.9)
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and (ii))q = 1when 0¢ = On = 0. Then )q can be referred to as the principal amplification

factor; while ,k2 and )_3 are referred to as the spurious amplification factors [1]. In gen-

eral, the principal amplification factor is the deciding factor in determining the accuracy

of computations [1]. Specifically, numerical solutions may suffer annihilations of sharply

different degrees at different locations and different frequencies if numerical diffusion asso-

ciated with )q varies greatly with respect to 0¢, On, re, and v n [7, p.20]. Moreover, note

that (1 - [)_l) is a measure of the numerical diffusion associated with ,k_, r = 1,2,3. For a

given e, let D(e) denote the stability domain of the 2D a-e scheme on the re-v, 7 plane. Let

X,.(E) a¢=r max (1 -[_,'l),
-_r<O¢ ,On _sr; (re ,vn)En(e)

r=1,2,3; 0<e<l (7.10)

Then, for a given e and each r, (1 -I_1) is bounded uniformly from above by X,(e). The

numerically estimated values of X_(e) are plotted in Fig. 19. From this figure, one con-

cludes that the numerical diffusion, particularly that associated with A1, can be bounded

uniformly from above by an arbitrary small number by choosing an e small enough. Note

that this property is also shared by the 1-D a-e scheme (see Eq. (3.19) in [2]). Moreover,

the results shown in Fig. 19 indicate that X2(e) and X3(e) are much larger than Xl(e) in

the range of 0 < e < 0.5. Thus, in this range, the spurious part of a numerical solution is

annihilated much faster than the principal part. Also it is seen that the numerical diffusion

associated with the principal solution, measured by Xl (e), increases with e in the range of

0<e<0.7.

Because of the appearance of non/inear weighted-average terms in its defining equa-

tions, stability of the 2D a-e-_-fl scheme is difficult to study analytically. However, results

from numerical experiments indicate that the stability domain of this scheme is slightly

larger than that of the 2D a-e scheme when a > 0 and fl > 0.

Before we proceed further, several concepts related to stability need to be clarified.

First note that, to define a numerical problem, one must specify (i) the main scheme (such

as any solver described in Secs. 4-6) used in the updating of the marching variables at

the interior mesh points, and (ii) the auxiliary discrete initial/boundary conditions. Thus,

generally stability is not a concept involving only the main scheme.

Next note that use of the von Neumann stability analysis can be rigorously justified

only if the numerical problem under consideration satisfies a set of strict conditions [1].

They include (i) the mesh used should be uniform in both spatial and temporal directions,

(ii) the main scheme used should be linear in the discrete variables, and (iii) the boundary

conditions used should be periodic in nature. Because (i) the stability conditions generated

using the von Neumann analysis are expressed in terms of the coefficients of the discrete

variables and the mesh parameters only, and (ii) the above coefficients and mesh param-

eters are constant and independent of the initial/boundary conditions, the stability of a

numerical problem that satisfies the above strict conditions (i)-(iii) is completely indepen-

dent of the initial/boundary conditions. For this special numerical problem, stability can

be considered as a concept involving only the main scheme.
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For a uniform-mesh linear problem with non-periodic boundary conditions, the stabil-

ity conditions generated from the yon Neumann analysis generally are necessary but not

sufficient conditions for stability. For such a problem, the initial/boundary conditions may

have an impact on stability and numerical diffusion. Note that the results given earlier in

this section are obtained without considering this impact.

Generally, stability of a nonlinear problem is highly dependent on the initial/boundary

conditions, and therefore highly problem-dependent. As a result, a discussion of the sta-

bility of nonlinear solvers without specifying the exact initial/boundary conditions, such

as that to be given immediately, is inherently imprecise in nature.

To proceed, for each mesh point (j, k, n) E f_, a local Euler CFL number ue > 0 is

introduced in Appendix D.2 (see Eqs. (D.32)-(D.35)). This number has the following prop-

erty: For the flow variables at the mesh point (j, k, n), its analytical domain of dependence

at the (n - 1)th time level lies within the corresponding numerical domain of dependence

if and only if u+ < 1. According to the results of numerical experiments, both the 2D

Euler a scheme and the simplified 2D Euler a scheme are generally unstable. However

the former is only marginally unstable when r,e,,,_, < 1 where Ue,ma, is the maximum

value of r,_ ever reached in a numerical experiment. As a matter of fact, in simulating

smooth flows, its round-off error often never reaches an appreciable level before the end of

the simulation run. As for the other solvers described in Sec. 6, stability generally can be

realized if Ue,m_, < 1 and 0.05 < e < 1. However, for a nonsmooth flow problem, stricter

stability conditions such as u_,,_a_ < 2/3, 0.1 < e < 1 and a > 1 may apply.
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8. Conclusions and Discussions

The space-time CE/SE method was conceived from a global CFD perspective and

designed to avoid the limitations of the traditional methods. It was built from ground zero

with a foundation which is solid in physics and yet mathematically simple enough that one

can build from it a coherent, robust, efficient and accurate CFD numerical framework. A

clear and thorough discussion of these basic motivating ideas was given in See. I.

The 1D CE/SE schemes [2] were reformulated in See. 2 such that the reader can see

more clearly the structural similarity between the solvers of the 1D convection equation

Eq. (1.1) and those of the 1D Euler equations. In addition, this reformulation also paves

the way for the construction of the 2D CE/SE schemes and makes it easier for the reader

to appreciate the consistency between the construction of the 1D CE/SE schemes and that

of the 2D schemes.

It was shown in See. 3 that the basic building blocks of the spatial meshes used in

the 2D CE/SE schemes are triangles. As a result, these schemes are compatible with the

simplest unstructured meshes, and therefore are applicable to 2D problems with complex

geometries. Furthermore, because they are constructed without using the dimensional-

splitting approach, these schemes are genuinely multidimensional.

The 2D a scheme, a nondissipative solver for the 2D convection equation Eq. (4.1),
was constructed in See. 4. It is a natural extension of the 1D a scheme and shares with

the latter several nontraditional features which are listed following Eq. (4.74).

Because a nonlinear extension of a nondissipative finear solver generally is unstable

or highly dispersive, the 2D a scheme was modified in Sec. 5 to become the dissipative 2D

a-e and a-e-a-fl schemes before it was extended to model the 2D Euler equations. It was

clearly explained in See. 5 that these 2D dissipative schemes are the natural extensions of

the 1D a-e and a-e-a-fl schemes, respectively. Moreover, as in the case of the latter schemes,

numerical dissipation introduced in the former schemes is controlled by the parameters e,

a and ft.

A family of solvers for the 2D Euler equations were constructed in Sec. 6. Not only

are these solvers the natural extensions of the 1D CE/SE Euler solvers, but their algebraic

structures are strikingly similar to those of the 2D a, a-e and a-e-a-fl schemes.

Next, stability of the 2D solvers described in Sec. 4-6 was discussed in Sec. 7. It was

shown that the 2D a scheme is nondissipative in the stability domain defined by Eq. (4.75).

It was also shown that the necessary stability conditions for the 2D solvers include: (i)

the local CFL number < 1 at every mesh point, and (ii) 1 > e >__0, a >_ 0 and fl > 0 if

applicable. Note that these conditions are also necessary stability conditions for the 1D

CE/SE solvers.

A summary of the key results of the present paper has been given. It is seen that

each of the present 2D schemes is constructed in a very simple and consistent manner as

the natural extension of its 1D counterpart. This is made possible because of the present

development's strict adherence to its two basic beliefs which were stated in Sec. 1.
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To evaluate the accuracy and robustnessof the CE/SE schemes,the two simplest
schemesamong them, i.e., the 1D and 2D CE/SE shock-capturing schemes,will be used
in Part II [3] to simulate flows involving phenomenasuchas shockwaves,contact discon-
tinuities, expansionwavesand their interactions. The numerical results, when compared
with experimental data, exact solutions or numerical solutions by other methods, indicate
that theseschemescan consistently resolve shock and contact discontinuities with high
accuracy.Note that other CE/SE schemesdescribedin this paper havealsobeenshownto
be accurate solversfor other applications [11,13-17,20,24,26-28].Furthermore, using the
present method, Yu et al. have successfully constructed several accurate solvers for 1D

and 2D problems with stiff source terms [21,22,32].

Note that the 1D CE/SE schemes have been extended to become accurate 2D and 3D

solvers by others without using the current approach. After constructing their 1D CE/SE

solver for the Saint Venant equations, Molls et M. [29] construct the 2D version using

the Strang's splitting technique [56]. Furthermore, several 2D and 3D non-splitting Euler

solvers have also been constructed by Zhang et al. [57-61] without using triangular or
tetrahedral meshes.

The triangles depicted in Fig. 5 are obtained by sectioning each parallelogram depicted

in the same figure into two triangles. The 2D CE/SE solvers can also be constructed using

the triangles that are obtained by sectioning each parallelogram into four triangles. These

solvers along with other CE/SE solvers with nonuniform spatial meshes [4] will be described

in future papers.

This paper is concluded with a discussion of several other extensions.

8.1. A sketch of a 3D Euler solver

The CE/SE method can be extended to three spatial dimensions using the same

procedure that was used in extending the method from one spatial dimension to two spatial

dimensions. In the 3D case, at each mesh point, the mesh values of any physical variable

and its three spatial gradient components are considered as independent variables. Because

there are four independent discrete variables per physical variable (or per conservation law

to be solved), construction of the 3D a scheme and the 3D Euler a scheme demands that

four CEs be defined at each mesh point. As will be shown immediately, this requirement

can be met by using tetrahedrons as the basic building blocks of the 3D spatial mesh.

To pave the way, consider the 2D case and Figs. 5 and 6(a). The quadrilaterals GFAB,

GBCD and GDEF are the spatial projections of the CEs associated with the point G'.

The CEs in the 3D case can be constructed in a similar fashion. Consider the tetrahedrons

ABCD and ABCP depicted in Fig. 20. Points G and H are the centroids of ABCD

and ABCP, respectively. The two tetrahedrons share the face ABC. The polyhedron

GABCH is then defined as the spatial projection of a CE associated with a space-time

mesh point G'. The CE is thus a right cylinder in space-time, with GABCH as its spatial

base. The point G is the spatial projection of point G'.

In a similar fashion, three additional CEs associated with the mesh point G' can be
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constructed by considering in turn the three tetrahedrons that share with ABCD one of

its other three faces.

Note that a structured 3D spatial mesh can be constructed from the tetrahedrons that

are obtained by sectioning the parallelepipeds occupying a spatial region. The details will

be given in a separate paper.

8.2. Concept of Dual Space-Time Meshes and Its Applications

The mesh depicted in Fig. 4(a) is staggered in time, i.e., the mesh points that have

the same spatial locations appear only at alternating time levels. In Fig. 21(a), the mesh

depicted in Fig. 4(a) (referred to as the mesh 1) is superimposed on another staggered

mesh (referred to as the mesh 2), with the mesh points of the latter being marked by solid

triangular symbols. The combination of the meshes 1 and 2 shall be referred to as the dual

mesh. As shown in Fig. 21(b), a CE of a mesh point marked by a triangle may coincide

with a CE of another mesh point marked by a dot.

Obviously the 1D a scheme can also be constructed using mesh 2. As a matter

of fact, one can even combine two independent 1D a schemes, one constructed on the

mesh 1, and the other on the mesh 2, into a "single" scheme referred to as the 1D dual a

scheme. Similarly one can also construct the dual 1D a-e and a-e-c_-_ schemes. Each of the

new schemes has two completely decoupled solutions. Without considering this decoupled

nature in the yon Neumann analysis, it can be shown that the resulting amplification

factors of the dual 1D a scheme are identical to those of the Leapfrog scheme as given in

[52, p.100]. Note that the deficiency of the standard practice that the amplification factors

of the Leapfrog scheme are obtained without taking into account the decoupled nature of

its solutions was addressed in Sec. 1.

Let (fin) be a mesh point of mesh 1 (mesh 2). Then (j -t- 1/2, n) are mesh points of

,n (see Eq. (2.10)) are defined in terms of the marchingmesh 2 (mesh 1). Recall that uj+l/2

variables at (j + 1/2, n- 1/2), which are on the same mesh with (j,n). Thus the two

solutions on meshes 1 and 2 of either the dual 1D a-e scheme or the dual 1D a-e-ot-_

u TM with u n (which are evaluatedscheme are decoupled. However, by replacing j-l.-l/2 j4-1/2

using Eq. (2.8) with the understanding that j be replaced by j -4-1/2) in their construction,
each of the above two schemes will turn into a new scheme in which the solutions on meshes

1 and 2 become coupled. The coupling results from the fact that u_ and u_+l/2 are not

associated with the same mesh. Note that the solutions of the new schemes generally are

indistinguishable from (or only slightly more diffusive than) those of the original schemes.

In [12,25], two implicit schemes for solving the convection-diffusion equation Eq. (1.2)

were constructed using a dual space-time mesh. In the case that # = 0, both the above

implicit schemes reduce to the explicit non-dissipative dual a scheme. As a result, the

amplification factors of these schemes reduce to those of the Leapfrog scheme if # = 0.

Furthermore, these two implicit schemes have the property that their numerical dissipa-

tion approaches zero as the physical dissipation approaches zero. The significance of this

property was discussed in See. 1.
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In case that # > 0, both the above implicit schemes are truly implicit. This implicit

nature is consistent with the fact that, for # > 0, the value of a solution to Eq. (1.2) at

any point (x,t) depends on the initial data and all the boundary data up to the time t.

In other words, generally an implicit scheme should be used to solve an initial/boundary-

value problem, such as one involving Eq. (1.2) with # > 0. This requirement becomes

more important as the diffusion term in Eq. (1.2) becomes more dominant.

In addition, for both the above implicit schemes, the solution at the mesh points

marked by dots, through the diffusion term in Eq. (1.2), is coupled with that at the mesh

points marked by triangles if # > 0. Also it was shown in [12,25] that, in the pure diffusion

case (i.e., when a = 0), the principal amplification factors of both the above implicit

schemes reduce to the amplification factor of the Crank-Nicolson scheme [52]. Note that

the latter has only one amplification factor.

The concept of dual space-time meshes also is applicable to the 2D and 3D cases.

As an example, consider a 2D mesh (the mesh 1) with the mesh points marked by circles

in Fig. 6(a)-(c). For this case, the mesh points of the mesh 2 are points G, C', E', G",

I" and K". In general, if (j,k,n) represents a mesh point of the mesh 1, then (j,k,n')

represents a mesh point of the mesh 2 if and only if (n - n') is a half-integer. Note that a

more complete discussion of the concept of dual meshes will be given in Part II [3].

Note that not only can the concept of dual meshes be used to construct implicit

schemes, but it can also be used to implement reflecting boundary conditions (see the

following paper [3]). In addition, this concept is indispensable in the development of a 2D

triangular unstructured-mesh CE/SE scheme [31].

8.3. A discussion on locally adjustable numerical dissipation

Consider the 1D a-e-a-�3 scheme, i.e., the scheme defined by Eqs. (2.7) and (2.60).

With e, a and /3 being held constant, generally numerical dissipation associated with

this scheme increases as the Courant number u decreases. To compensate for this effect,

Eq. (2.60) may be replaced by

+ n _ a+ _n __ U; +(u_)j 2_(,)(_;+ . °+,n= (_ jj + -_ j_ +/3(.)(u_ + )_ (8.1)

where e(v) and fl(v) are monotonically decreasing functions of v with e(0) =/3(0) = 0. The

optimal forms of these functions generally are problem-dependent. The scheme defined by

Eqs. (2.7) and (8.1) has the property that

+ n . a+ _n(_)j -_ (_ _j as _t -_ 0 (8.2)

With the aid of Eq. (8.2), it is easy to see that the new scheme shares with the a scheme

the same property Eq. (2.19) in [2], i.e.,

u'_+a_u_ and (u+_ n+l + n, _,j -_ (_)j as _ -_ 0 (8.3)

In the new scheme introduced above, numerical dissipation is controlled by the pa-

rameters e(v), t3(v) and a with the first two being the functions of the convection speed
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a, the mesh interval _z and the time-step size At. In similar extensions involving solvers

of more complicated nonlinear equations, the values of these parameters may vary with

space and time, and their local values generally will be functions of local values of dynamic

variables, mesh intervals and time-step size.
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Appendix A. A CE/SE Solver for the Sod's Shock Tube Problem

with Non-Reflecting Boundary Conditions

C

c

implicit real,8(a-h,o-z)

dimension q(3,999), qn(3,999 ), qx(3,999), qt(3,999 ),

s(3,999), vxJ(3), vxr(3), xx(999)

nx must be an odd integer.

nx = 101

it = 100

dt = 0.4d-2

dx = 0.1d-1

ga = 1.4d0
rhol = 1.d0

ul = O.dO

pl = 1.dO

rhor = 0.125d0

ur = O.dO

pr = 0.1dO

ia= 1

nxl = nx + 1

nx2 = nxl/2

hdt = dt/2.dO

tt = hdt,dfloat(it)

qdt = dt/4.dO

hdx = dx/2.dO

qdx = dx/4.dO

dtx = dt/dx

al =ga- 1.dO

a2 = 3.dO - ga

a3 = a2/2.dO

a4 = 1.5dO*a1

u21 = rhol*ul

u31 = pl/al +

u2r = rhor*ur

u3r = pr/al +

doSj = 1,nx2

q(1,j) = rhol

q(2,j) = u21

q(3,j) = u31

q ( 1 ,nx2 +j) = rhor
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5

C

IO0

120

150

q(2,nx2+j) = u2r

q(3,nx2+j) = u3r

do 5 i = 1,3

qx(i,j) = O.dO

qx(i,nx2+j) = O.dO
continue

open (unit =8,file='forO08')

write (8,10) tt,it,ia,nx

write (8,20) dt,dx,ga

write (8,30) rhol,ul,pl

write (8,40) rhor,ur,pr

do 400i= 1,it

m = nx + i - (i/2).2

do 100j = 1,m

w2 = q(2,j)/q(1,j)

w3 = q(3,j)/q(1,j)

f21 = -a3.w2**2

f22 = a2.w2

f31 = al*w2**3 - ga.w2*w3

f32 = ga.w3 - a4.w2**2

f33 = ga*w2

qt(1,j) = -qx(2,j)

qt(2,j) =-(f21*qx(1,j) + f22*qx(2,j) + al*qx(3,j))

qt(3,j) =-(f31*qx(1,j) + f32.qx(2,j) + f33*qx(3,j))

s(1,j) = qdx.qx(1,j) + dtx*(q(2,j) + qdt.qt(2,j))

s(2,j) = qdx*qx(2,j) + dtx.(f21*(q(1,j) + qdt.qt(1,j)) +

f22.(q(2,j) + qdt.qt(2,j)) + al*(q(3,j) + qdt.qt(3,j)))

s(3,j) = qdx*qx(3,j) + dtx*(f31*(q(1,j) + qdt*qt(1,j)) +

f32*(q(2,j) + qdt.qt(2,j)) + f33*(q(3,j) + qdt.qt(3,j)))

continue

if (i.ne.(i/2)*2) goto 150

do 120k = 1,3

qx(k,nxl) = qx(k,nx)

qn(k,1) = q(k,1)

qn(k,nxl) = q(k,nx)
continue

jl = 1 -i + (i/2).2

roB=m-1

do 200 j = 1,ram

do 200k = 1,3
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200

300
400
C

500

600

c

10

20

3O

40

5O

qn(k,j+jl) = 0.5dO.(q(k,j) + q(k,j÷l) + s(k,j) - s(k,j+l))

vxl(k) = (qn(k,j+jl) - q(k,j) - hdt*qt(k,j))/hdx

vxr(k) -- (q(k,j+l) + hdt.qt(k,j+l) - qn(k,j+jl))/hdx

qx(k,j+jl) = (vxl(k).(dabs(vxr(k)))**ia + vxr(k).(dabs(vxl(k)))

**ia)/((dabs(vxl(k)))**ia + (dabs(vxr(k)))**ia + 1.d-60)
continue

m = nxl-i + (i/2).2

do 300 j -- 1,m

do 300k= 1,3

q(k,j) = qn(k,j)
continue

continue

m = nxl -it + (it/2).2
mm=m-1

xx( 1 ) = -0.5dO*dx .dfloat (mm)

do 500 j = 1,mm

xx(j+l) = xx(j) + dx
continue

do 600j = 1,m

x = q(2,j)/q(1,j)

y = al*(q(3,j) - 0.5dO*x**2*q(1,5))

z = x/dsqrt(ga, y/q(1,j))

write (8,50)xx(j),q(1,j),x,y,z
continue

close (unit=8)

format(' t = ',g14.7,' it = ',i4,' ia = ',i4,' nx = ',i4)

format(' dt = ',g14.7,' dx = ',g14.7,' gamma = ',g14.7)

format(' rhol = ',g14.7,' ul = ',g14.7,' pl = ',g14.7)

format(' rhor = ',g14.7,' ur = I,g14.7,' pr = ',g14.7)

format(' x =',f8.4,' rho =',f8.4,' u =',f8.4,' p =',f8.4,

' M =',f8.4)

stop
end
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Appendix B. Proof for Eq. (4.51)

To proceed, first we shall evaluate the flux leaving each of the six quadrilaterals that

form the boundary of a CE (see Figs. 10(a) and ll(a)). As a preliminary, note that, in

Fig. 10(a),
2wh

area of ABGF = area of CDGB = area of EFGD - (B.1)
3

In Fig. ll(a), we have

2wh
area of BCGA = area of DEGC = area of FAGE - -

3
(B.2)

Equations (B.1) and (B.2) can be proved easily using the information provided in Fig. 12(a).

Moreover, because u*(x,y,t;j,k,n) is linear in x, y, and t (see Eq. (4.10)), its average

value over any quadrilateral is equal to its value at the geometric center (centroid) of the

quadrilateral. With the above preparations, flux evaluation can be carried out easily using

Eqs. (4.6a)-(4.6c), (4.8), (4.10), (B.1), and (B.2).

For each quadrilateral, the result of flux evaluation is a formula involving a,, ay, uj_,k,
n n _ 31- n

(u_)j,k, and (uy)j,k. It can be converted to another formula involving v_, v_, uj,k, (u_)j,k,

and + n(un)j,k" To carry out the above conversion, note that Eqs. (4.19), (4.20), (4.22), (4.23),

(4.27), and (4.28)imply that

(B.3)

and, for any (j, k, n) E 12,

, )(13

w w+b w-b +
(B.4)

Let (u,)j_,k, (uy)jn, k,..., be abbreviated as u,, uy,..., respectively.

(B.4) imply that
2h

a_-- 3At(v'7-v¢)

Then Eqs. (B.3) and

(B.5)

w ) 4whha, + _ - b ay = 9A-----t(V¢ + 2Vn)
(B.6)
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and

u_=- u +u (B.8)
W

zXt a u v_u__-( _ _ + a_u_)= ._u_ +

(B.0)

(B.IO)

The conversion referred to above can be carried out using Eqs. (B.5)-(B.12).

Consider Fig. 10(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE,.(j, k, n), r = 1, 2, 3, and (j, k, n) C l_x are given here:

(1) The flux leaving CE1 (j, k, n) through G'F'A' B' is

2wh( )nu+u-_ +u +3 " j,k

(2) The flux leaving CE_(j,k,n) through G'GFF' is

2wh9 (v,+2v,) u+2u-_-u ++ (v(u-_ +t_nu+ i,k

(3) The flux leaving CE_(j,k,n) through G'B'BG is

V U -t-2wh (2v, + vn) u - u-_ + 2u ++(v;u-_+ 77 ,7
9 j,k

(4) The flux leaving CEl(j,k,n) through AFGB is

2wh
u+\ n-l/2(u - u_ )

3 77.,j+l/3,k+i/3

(5) The flux leaving CE_(j,k,n) through ABB'A' is

j+l/3,k+l/3
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(6) The flux leaving CEI(j, k, n) through AA'F'F is

j+l/3,k+l/3

(7) The flux leaving CE2(j, k, n) through G'B'C'D' is

2wh u- 2u-_ + u
3 j,k

(8) The flux leaving CE2(j,k,n) through G'GBB' is

9 j,k

(9) The flux leaving CE2(j, k, n) through G'D'DG is

9 u i-u_ u-u_--u,

(10) The flux leaving CE2(j, k, n) through CBGD is

3 j-2/3,k+_/3

(11) The flux leaving CE2(j, k,n) through CDD'C' is

(12) The flux leaving CE2(j, k,n) through CC'B'B is

j-2/3,k+l/3

(13) The flux leaving CE3(j,k,n) through G'D'E'F' is

(- u +u_- - 2u
3 j,k

(14) The flux leaving CE3(j, k,n) through G'GDD' is
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(15) The flux leaving CEz(j,k,n) through G'F'FG is

2wh 2t_n) u 2u_- - @¢u_- 1., u +
j,k

(16) The flux leaving CE3(j,k,n)through EDGF is

3 j+l/z,k-2/3

(17) The flux leaving CE3(j, k, n) through EFF'E' is

2wh [ + (_,_u__+u,7u+)] "_-1/2
j.T1/3,k-2/3

(18) The flux leaving CE3(j,k,n) through EE'D'D is

j+l/3,k--2/3

Consider Fig. 11(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE_(j, k, n), r = 1,2, 3, and (j, k, n) C ft2, are given here:

(19) The flux leaving CE_(j, k,n) through G'C'D'E' is

2wh( )nu -- U_- -- u +
3 _ j,k

(20) The flux leaving CEl(j,k,n) through G'GCC' is

2wh 2v,7) - 2u_- @,u_- vnu +)
j,k

(21) The flux leaving CE_(j,k,n) through G'E'EG is

[2wh(2r,,+r%) u +u-_ - 2u+ + @,u-_ +v,_u +)
9 j,k

(22) The flux leaving CE_(j,k,n) through DCGE is

2wh

(u + + U+'_ n--1/2

3 n )j-llz,_-_/3
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(23) The flux leaving CEa(j,k,n)

2wh 2un)9 (u_ +

(24) The flux leaving CEa(j,k,n)

2wh (2u< + u,7)9

(25) The flux leaving CE2(j,k,n)

through DEE'D' is

through DD'C'C is

through G'E'F'A' is

2wh 2u-_u+ -u
3 j,k

(26) The flux leaving CE2(j, k,n) through G'GEE' is

9 j,k

(27) The flux leaving CE2(j, k,n) through G'A'AG is

j,k

(28) The flux leaving CE2(j, k, n) through FEGA is

2wh n--1/_

- +3 '7)j+2/3,k-1/z

(29) The flux leaving CE2(j,k,n) through FAA'F' is

a n--l/2
V U +

2wh (2u¢ + r"7) u - u-_ + 2u+ - ( u_u-_ +9 , ,7) ]j+2/3,k__/z

(30) The flux leaving CE2(j,k,n) through FF'E'E is

, "1n--a�2

2wh9 (P', - //r/) [U -- U_- -- U_ -- (P',U_- -_- P'r/U_T)Ij.4.2/3,k_I/3

(31) The flux leaving CU3(j,k,n) through G'A'B'C' is

2wh ( +)nu - u-_ + 2u
3 j,k
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(32) The flux leaving CE3(j,k,n) through G'GAA' is

I ( /]_9 we-r,,) u+u_-+u,7

(33) The flux leaving CE3(j,k,n) through v'e,ev is

_w_(__+_,)o__ +u,++(_o_+_,_,+_,_
(34) The flux leaving CE3(j,k,n) through BAGC is

2wh (u + u-_ _ 2u +}' ,,-a/2
3 n z j-1/3,k+2/3

(35) The flux leaving CE3(j, k,n) through BCC'B' is

n--l/2,w_ [-- - +-(-_-_+-,-,+IJ
j--1/3,k+2/3

(36) The flux leaving CE3(j,k,n) through BB'A'A is

n--l/2

, (-_+ + _,,+_ + ]
j-J/a,k+2/3

With the aid of Eqs. (4.29)-(4.46) and (4.49a)-(4.50c), Eq. (4.51) is the result of
(1)-(36) and Eq. (4.11). QED.
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Appendix C. Proof for Eq. (6.51)

As a preliminary, note that Eqs. (6.18), (6.21), and (6.27) can be used to obtain

4
\

t,q=l

(C.1)

and
4

,, _ _ u S_,q_q_)f:t=-- E fm,_(fl,q q_+ y
/

_,q=l

In this appendix, we adopt the same convention stated following Eq. (6.32).

from Eqs. (6.29)-(6.32) that

m,l __ 2 m,g

\ f_,l 3at -h h fn+_,, '

m = 1,2,3,4

(c.2)

It follows

(C.3)

and

() (1Umx 3 me

W w+b w -b
amy _ _ u+,,

m = 1,2,3,4 (c.4)

An immediate result of Eqs. (C.3) and (C.4) is

4 4

Z (f_,lue_ + f v u,v) 4 ( f¢+ fW+ u+lw)",' : XiZ _ m,,"+,_+ m,,
g=l _=1

, m = 1,2,3,4 (c.5)

By using Eqs. (6.14), (6.16)-(6.21), and (C.1)-(C.5), it can be shown that

3 +
Urax = -- (U+mg + Umn)

W

(C.6)

+ um_ + _ umy _¢

b w) h

w
4

4wh (fg+ 2f + "_
9at E\ m,e+ m,t/Ut

/=1

(c.7)

(c.8)

(C.9)
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4

w 4wh [2f¢+ if+ "_

t=l

- 9_xt E\ ,_,l + re,l/
t=1

w+ _)f_ + _fm_

- 9at E\ m,t + .'_,l)
£=1

w h
6)f_m_ + _f_my

(c.,o)

(c._1)

(ca2)

hf_ t + -_ -b f_t = --9(:,t)2 E \ m,l + m, U \Se,q'_qg +'_l,q _qn
l,q=l

(c._3)

w ) 16wh-hf:, + (_ + b fL - 9(:,t)_ E \ Wt,#. + ,_j _.]'_,q:ttq, + ]£,q "llq,)

£,q=1

(c.14)

w _t -v

' [- 3At z_.., \ -_: '_:/
£--=1

( f<+ + + .,_,q q,: ]E\ l,q Uq;
q=l

(c._5)

and

w ,xt

' [- 3_t z..., \ _,_ m,,] U_ + U+_ _ u +, :I:
£=1 q=l

(c._6)

Note that each of Eqs. (C.15) and (C.16) represents two equations. One corresponds to

the upper signs; while the other, to the lower signs.
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Next we shall evaluate the flux of h m leaving each of the six quadrilaterals that form

the boundary of a CE (see Figs. 10(a) and ll(a)). The evaluation procedure is similar to

that described in Appendix B. For the current case, the key equations used are Eqs. (4.6a)-

(4.6c), (6.15), (6.23)-(6.25), and (C.6)-(C.16). Futhermore, as will be shown shortly, the

structures of the results obtained here are very sim//ar to those given in Appendix B.

Consider Fig. 10(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE.(j,k,n), r = 1,2,3, and (j,k,n) C _1, are given here:

(1) The flux of fz_ leaving CEa(j,k,n) through G'F'A'B' is

2wh ( )n3 urn + u + u +m_ -_- mT? j,k

(2) The flux of _*h m leaving CE](j, k,n) through G'GFF' is

2f_ +

l=l

+ 2u+¢ - u+ + Z {:_+ u+ '7+ +tn \ Jl,q qi + f'_,q U qrl

q=l j,k

(3) The flux of _*h m leaving CEa(j,k,n) through G'B'BG is

'::++:÷
q=l j,k

(4) The flux of f_ leaving CE_ (j, k, n) through AFGB is

2wh ( u+ + ) n-1/2
3 um -- m_ -- Um'q j-t-1/3,k+l/3

(5) The flux of f_* leaving CEl(j,k,n) through ABB'A' is

[ "-_- 2fr/+m,t} "_ 12¢'-- 2U+_ -_- u+£rl -- Z \a,,q(f_A-12-4-q_ -_- _,qirrl+ U+qrl

q=l " jT1/3,k+l/3

(6) The flux of f_ leaving CE_ (j, k, n) through AA' F'F is

2wh{' [2,+ iZ+,)
t=l

4+u+¢ 2u+'_ Z( ¢+'+ ¢'7+u+'_-- -- f_,q tXq_ + jg,q qrl]

q=l j+l/3,k+l/3

(7) The flux of h m leaving CE2(j, k, n) through G'B'C'D' is

( )°+2wh 2u +. + um,j
3 Um -- _ j,k
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(8) The flux of ft* leaving CE2(j,k,n) through G'GBB' is

2wh { 4 {2f¢+ f,7+"l [9 E _ m,l + m,l] ul -- U+l(_

l=l
, }n+_.u,+.+E _'+-++r +u+_]

q=l _Jl,q q_ l,q qTI]] j,k

(9) The flux of ft_ leaving CE2(j,k,n) through G'D'DG is

2wh { 4 { fi+ _f,7+'_ [ +9 E\ m,e re,e] ue-u+_-ul, 1 , ]}n+ _/._+ + ,_+_+
q=l j,k

(10) The flux of "*hm leaving CE2(j, k, n) through CBGD is

2wh u + + ._n-ll_
(um --_ 2 m( -- Umrl) j_2/3,kA_l/3

(11) The flux of ft_ leaving CE2(j,k,n) through CDD'C' is

2wh { 4 {2f _+9 E\ m,t
l=l

_Jl,q q_ ./l,q q_/]

q=l j--2/3,k'+l/3

(12) The flux of "*hm leaving CE2(j, k, n) through CC'B'B is

2wh

9 \ ._,_ re,e/ [ul + lt+¢,._., -Jr 'It +¢.rl -- _ + f;,q

q----1 " j--2/3,k+l/3

(13) The flux of f_ leaving CE3(j,k,n) through G'D'E'F' is

(2wh + _ 2u +
3 um + um¢ ,7 j,k

(14) The flux of ft_ leaving CE3(j,k,n) through G'GDD' is

2wh { 4 { f,7+ _f¢+'_ [9 E\ m,t _,ej ue-u_-u +
l=l

._' ]}n[ ,-_+ + ,-,7+ + "_+
_.]'_,q Uq_ + .]'e,q Uq_)

q=l j,k

(15) The flux of fz* leaving CEz(j,k,n)through G'F'FG is

2wh { 4 { fi + 2f+'_ [9 E\ re,e+ re,e/ ul
£=-1

+ 2u,+<-u++ Z _<+u+ s'÷g'q _Jl,q q_ -4- l,q U

q=l j,k
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(16) The flux of hm leaving CE3(j,k,n) through EDGF is

2wh + _ n-a/2
5 ( am-u+ m( + 2u,_n) j+l/3,k-2/3

(17) The flux of h m leaving CE3(j, k, n) through EFF'E' is

9 t=l t, m,e m,t] ut

(18) The flux of _*hm leaving CEz(j, k, n) through EE'D'D is

4 ]}tn+ + \

q=l

n--l/2

9 - _ \ .-_,! + re,e/ ut-

j-4-1/3,k-2/3

_,Jt,q q¢ -4- fl,q Uqrl

q=l / jA_l/3,k_2/3

Consider Fig. ll(a). The results of flux evaluation involving the quadrilaterals that

form the boundaries of CE.(j, k, n), r = 1, 2, 3, and (j, k, n) C _2, are given here:

(19) The flux of h m leaving CEI(j, k,n) through G'C'D'E' is

2wh ( -u + _u+ ) '_3 um mi m,7 j,_

(20) The flux of f_ leaving CE_(j,k,n) through G'GCC' is

9 Z\ m,t+ f_,, ue- [Ii,qUq¢+Jt,q qnJ

g=l q=l j,k

(21) The flux of h_ leaving CEa(j,k,n) through G'E'EG is

' _II,q "t.tq< + If,q UqT1)

l=l q----1 j,k

(22) The flux of h* leaving cn_(j,k,n) through DCGE is

2wh [ + + \n-a�2

3 _Urn _t_ Um( _._ Urnn)j_l/3,k_l/3

(23) The flux of fz* leaving CEa(j,k,n) through DEE'D' is
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9 _=a \ m't+2 n+ 4 (re÷u+ -_-f_,q?'tq_?)] }n-l/2\l,q q¢
+ _ _ n+ ++ 2u+¢ - uln

q=l - j-a/a,k-1/3

(24) The flux of f_ leaving CEI(j, k, n) through DD'C'C is

2wh

--- _=1 \ m,_+ re,e/ u_-u+¢

:n+u+'_l n-a�2

:f ¢+u+ +Jt,q qn]J
+2_+_-_ _,, q_

q=l " j--1/3,k--1 /3

(25) The flux of h* leaving CE_(j,k,n) through G'E'F'A' is

2wh( )n3 um+2u+¢-u +, j,k

(26) The flux of ft_ leaving CE2(j,k,n) through G'GEE' is

2wh { 4 {2f¢+ fn+'_ [9 Z\ re,t+ re,l/ ut
t=l

_.]'_,q U q¢ "4- j ¢.,q q_? ]

q=l j,k

(27) The flux of h._ leaving CE2(j,k,n) through G'A'AG is

l=1 _' m,l m:/ ul .+ ut+¢+ u+ + _ : .¢+ + ,+ +l_? _f_,q Uq¢ -_- f£,q Uq7 ?

q=l j,k

(28) The flux of _*hm leaving CE2(j, k, n) through FEGA is

2wh ( + + ._ n-a/23 u_ - 2Um_ + Um_)jT2/3,k_l/3

(29) The flux of hm leaving CE2(j,k,n) through FAA'F' is

2wh { 4 {2f¢+ fn+'_ [9 Z _ m,_+ _,_/ _- _+_
£----1

+2u+_-_:.¢++ s,+_.]-i,q U q¢ + l,q U

q=l " j-{-2/3,k--1 //3

(30) The flux of f_* leaving CE2(j, k, n) through FF'E'E is

2wh

9
:f<+_ f,+_ +-- _ .,,_ .,,_/ u_- u_ - u_,- Z (:_+u+

l=1 q=l

+:,uq,/]/
/ jA-2/3,k-1/3
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(31) The flux of f_* leaving CE3(j,k,n) through G'A'B'C' is

2wh ( u + + 2u + )n3 Um- m( rl j,k

(32) The flux of h_ leaving CEz(j,k,n) through G'GAA' is

m,e re,g} Ue + U[(
£----1

+ _ {_¢+u + ,+ ++ ue,7+ \Jl,q qc + .fe,q Uq,7
q=l j,k

(33) The flux of f_ leaving CEz(j, k, n) through G'C'CG is

-9 _=1 _ m,l + -m,G u_ - 4 (fC+u+ + ¢V+u+'_]} n

q=l j,k

(34) The flux of f_* leaving CEa(j, k, n) through BAGC is

2wh ) ,_-a/23 (um+u + -2u+,7mC j-l/3,k+2/3

(35) The flux of f_* leaving CE3(j,k,n) through BCC'B' is

(36) The flux of f_ leaving CEz(j,k,n) through BB'A'A is

9 _ re,e+ m,t] ut+ - e_
t=l

4 ] I n-l/2Z {_C+u+ + .,7+ +)_.,e,q qC ]l,q Uq,7

q=l i j_l/a,k+2/a

4 ] }n--l/2
- _ ( _+" + _,+u+\ J e,q '_qc+ Je,q q,7/

q=l " j--1/3,k+2/3

With the aid of Eqs. (6.33)-(6.50) and (4.49a)-(4.50e), Eq (6.51) is the result of

(1)-(36) and Eq. (6.28). QED.
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Appendix D. Supplementary Notes

D.1. A Discussion of Eq. (4.75)

Here we shall prove an assertion made in Sec. 7 about the 2D a scheme, i.e., the

backward characteristic projection of a mesh point (j, k, n) C f_ at the (n - 1)th time level

is in the interior of the numerical domain of dependence of the same mesh point if and

only if Eq. (4.75) is satisfied (see Fig. 22). For simplicity, hereafter the above mesh point

will be referred to as point O (not shown). In Fig. 22, the spatial projection of point 0

at the (n - 1)th time level is represented by point O'; while the backward characteristic

projection of point O at the (n - 1)th time level is represented by point P. Without any

loss of generality, we shall assume that j = k = 0. Thus (i)

(_ = r/= O, and t = nat (D.1)

for point O, and (ii)

_=,=0, and t=(n-1)at (D.2)

for point O'.

To simplify the discussion, Eq. (4.1) is converted to an equivalent form in which _, r/,

and t are the independent variables, i.e.,

Ou Ou Ou

_- +a_ +ann =0 (D.31

Here a¢ and a n are defined in Eq. (4.22). The characteristics of Eq. (D.3) are the family

of straight lines defined by

= a_t + cl, and 7/= ant + c2 (D.4)

where cl and c2 are constant along a characteristic, and vary from one characteristic to

another. Because points O and P share the same characteristic line, Eqs. (D.1) and (D.4)

imply that

= -aeat, rI = -anat , and t = (n - 1)at (D.5)

for point P. Note that the temporal coordinate, i.e., t = (n - 1)at, of points O' and P are

suppressed in Fig. 22.

According to the definition given in Sec. 7, the numerical domain of dependence of

point O at the (n - 1)th time level is the hexagon depicted in Fig. 22. Here the term

'hexagon' refers to both the boundary and the interior. The coordinates (_,r/) of the

vertices A, B, C, D, E, and F are given in the same figure. The six edges of the hexagon
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and their equations on the (-q plane are

AB : (+ + rl+ = 1

DE: (++71 + =-1

BC : 71+ = 1

-EF : q+ = -1

CD : (+ = -1

FA : (+ = 1

(D.6)

Here the normalized coordinates (+ and 7?+ are defined by

(+ clef _/A(, and q+ clef q/AT? (D.7)

As a result of Eq. (D.6), a point ((, 7/) is in the interior of the hexagon ABCDEF if and

only if

+ + < 1, In+l < 1, and ICI < 1 (D.8)

Equations (D.5), (D.7) and (D.8) coupled with Eqs. (4.27) imply point P is in the interior

of the hexagon ABCDEF if and only if Eq. (4.75) is satisfied. QED.

D.2. The Local Euler CFL Number

The definition of the local Euler CFL number at the point O (the same point defined

in Sec. D.1) is given here.

To proceed, consider Fig. 23. In this figure, point O' and the hexagon ABCDEF are

also those defined in Sec. D.1. Let u, v and c be the x-velocity, the y-velocity and the

sonic speed at point O, respectively. Let g_ and gy be the unit vectors in the x- and the

y- directions, respectively. Let (denote the velocity vector at point O, i.e.,

(def U_'_ + v G (D.9)

Let the point P depicted in Fig. 23 be at the (n - 1)th time level with its spatial position

defined by
__----+

O'P = -(At (D.10)

Point P is the center of the circle depicted in Fig. 23. This circle lies at the (n - 1)th time

level and has a radius of cat. Furthermore, it is the intersection of (i) the Mach cone [62,

p.425] with point O being its vertex, and (ii) the plane with t = (n - 1)At. For the Euler

equations Eq. (6.10), and in the limit of _,t _ 0, this circle is the domain of dependence

of point 0 at the (n - 1)th time level Here a circle refers to both its circumference and

interior. The local Euler CFL number ve at point O will be defined such that ve < 1 if

and only if the domain of dependence of the Euler equations (i.e., the circle) lies in the
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interior of the numerical domain of dependence (i.e., the hexagon ABCDEF). In other

words, Ue < 1 if and only if the normalized coordinates (_+,r/+) of every point on the

circumference of the circle satisfy Eq. (D.8).

As a preliminary, let (i) OC denote the set of the points on the circumference of the

circle defined above, and (ii) Se denote the set of the unit vectors on the z-y plane. Then,

for any point R C OC (see Fig. 23), there exists an g C S_ such that

PR = cAtg (D.11)

Combining Eqs. (D.10) and (D.11), one has

O'R= (c_'-q-)at (D.12)

To proceed further, note that Eqs. (4.18), (4.20) and (D.7) imply that

V¢ + _ 1 (G w + b2w h G) (o.13)

and
1 w-b

Vr/+ -- 2w(g_ + Tgy) (D.14)

Let (i) _+(O'), {+(P) and _+(R) denote the values of {+ at points O', P and R, respec-

tively, and (ii) 7/+(O'), T/+(P) and 7/+(R) denote the values of 7/+ at points O', P and

R, respectively. Then, because _+(O') = 7/+(O ') = 0 and the gradient vectors given in

Eqs. (D.13) and (D.14) are constant, Eqs. (D.10) and (D.12)-(D.14) imply that

_+(P) = -at _'. V_ + - at (u w + by) (D.15)
2w h

and

_+(P) = -at q'. V_/+-

¢+(R) = at(cg-q3. V¢+ =

,+(R) = at (cg- 3" V, + =

at (u+ w- by)
2w h

(+(P) + cat g. V(_ +

rl+(P) + cat g- VT/+

(D.16)

(D.17)

(D.18)

_+(R) + rl+(R) = _+(P) + ,+(P) + catg. V(_ + + 71+) (D.19)

Note that point R is a function of g C Se. In the following, we shall evaluate the

maxima and minima of _+(R), r/+(R) and (_+(R) + r/+ (R)) over the range &. To proceed,
let

u(,1) d,_=f(--4" V_ + 4- c]V_+i) at (D.20)

,.,_)_°d(_¢. v,+ + clV,+t) at (D.21)
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doj[_¢. v(¢+ + + ¢1v(¢++ (D.22)

and

def V_ + _ def VT] + _ def V(¢ + "{-TI +)

el = _(+l, e2 = IV.+ ] , and ez = IV(('+ + r/+)J
(D.23)

With the aid of Eqs. (D.13)-(D.16), (4.14) and (4.15), Eqs. (D.20)-(D.22) imply that

cAtA_
u('l) - 2what [hu - (w + b)v T carl] = ¢+(P) ± 2wh (D.24)

and

c_t_¢ (D.25)2w T2wh

cata_ (D.26)u(z) _ At [2hu - 2bv + car] : ¢+(P) + _+(P) + 2wh2wh

where a(', ar/ and

def h2 (D.27)ar = 2X/_+

respectively, are the lengths of the three sides DF, BD, and FB of the triangle ABDF

depicted in Figs. 12(a)-(c). Furthermore, as a result of Eq. (D.23), (i) 6 is normal to

any straight line along which (+ is a constant, (ii) 6'2 is normal to any straight line along

which 7 + is a constant, and (iii) 6'z is normal to any straight line along which _+ + 77+

is a constant. It follows from the above observations and Eq. (D.6) that 6"a, 6'2 and 6'z,
---------+ --.>

respectively, point in the directions of 0'I, O'J and O'K (see Fig. 23).

With the aid of Eqs. (D.20)-(D.23), it is easy to conclude from Eqs. (D.17)-(D.19)
that:

(a) For all 6'C Se,

u(+1> > ¢+(R) > u <1) (D.28)

with the understanding that the upper bound u(+1) and the lower bound v(_1), respec-

tively, are attained when 6.= 6'a and 6. = -e_.

(b) For all _'E Se,

u (2) > q+(R) > u (2) (D.29)

with the understanding that the upper bound u (2) and the lower bound u(_2), respec-

tively, are attained when 6. = 6.2 and 6. = -6'2.

(c) For all 6'C Se,

u(+z) > ¢+(R) + rl+(R) > u (3) (D.30)

with the understanding that the upper bound u (a) and the lower bound r,(_3), respec-

tively, are attained when _"= 6'a and _"= -6'3.
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Let

..),,o__,

Then Eqs. (D.24)-(D.26) imply that

g = 1,2,3 (D.31)

V(1)_ At

2wh []hu - (w + b)v I + ca_] (D.32)

v(2) - at
2wh []hu + (w -b)v] + cAC] (0.33)

and

v(3)_ At
2wh [2]hu - bv] + car] (9.34)

Let re, the local Euler CFL number at point O, be defined by

def max{v(1)v(2), v (a)} (D.35)V e _-

Then the conclusions given in (a)-(c) coupled with Eq. (D.8) imply that the circle depicted

in Fig. 23 lies entirely in the interior of the hexagon ABCDEF (i.e., the analytical domain

of dependence of point O lies within its numerical domain of dependence) if and only if

ve < 1 (D.36)

The mesh with b = 0 is used in [3]. For this special case, we have

A_=A_?= V/w 2+h 2, and AT=2h if b=0 (D.37)

As a result, Eqs. (D.32)-(D.35) imply that

{(c+]u,)at at [h,u[+w[vl+ v/w2+h 2c]} if b 0 (D.38)t_ e ---- max --_
w ' 2wh

Note that the second component within the parentheses in Eq. (D.38) is a simplified form

of the expression given on the extreme right side of Eq. (D.8) in [9]. As a result, ve given

in Eq. (D.38) is identical to that given in Eq. (D.9) in [9].

D.3. An Existence Theorem

Here we shall prove the following theorem.

Theorem. At any mesh point (j,k,n) E _, existence of

Ell and E a , _ = 1, 2, 3
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is assuredif the local CFL number

u_ < 2/3 (D.39)

Proof: As a preliminary, we shall discuss the eigenvalues of the matrix

M(k=,k_) def k= F= + ky F y (D.40)

Here (i) k_ and ky are arbitrary real numbers, and (ii) E _ and F y are the matrices formed

by f,_,t and f_,t (see Eq. (6.13)), m,g = 1,2,3,4, respectively. By using (i) Eqs. (1.1),

(1.2), (2.1) and (4.1)-(4.3) in [63], and (ii) the fact that two similar matrices have the

same eigenvalues, counting multiplicity [54, p.45], one concludes that the eigenvalues of

M(k_,kv) are ),0, A0, A+ and A_ with

)_0 clef k, u + k v v (D.41)

and

(D.42)

Note that it is assumed here that the flow variables are evaluated at the mesh point (j, k, n)

(i.e., the point O referred to earlier in this appendix).

Because F i+ and F n+, respectively, are the matrices formed by fi+ and fn+ rn,g =m,t m,t'

1,2,3,4, Eqs. (6.29), (6.31) and (4.20} imply that

F¢ + _ 3At (F* w + b Fu _ (D.43)
4w \ h t

Fn+ -- 3At (F_ + _ _-Fu)4w (D.44)

and

Fi+ + Fn+ - 3At ( F_ - b Fu)2w (D.45)

With the aid of Eqs. (4.14), (4.15), (D.27), (D.40)-(D.45), one arrives at the following

conclusions:

(a) The eigenvalues of F ¢+ are )_1), )_a), A(+I) and _(J) where

= u (D.46)
4w h

and

3catA_ (D.47)
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(b) The eigenvalues of F '7+ are A_2), _2), _) and A(_2) where

(D.48)

and
3c_t_(

4wh
(D.49)

(c) The eigenvalues of (F (+ + F '7+) are A_I) + A_2)A_a) + A_2), _?) and A(__3) where

3cAtAr

4wh
(D.50)

Let (i))h, A2, ..., )_,_ be the eigenvalues of any n x n matrix A, and (ii) I be the

n x n identity matrix. Then the eigenvalues of the matrix I - A are 1 - )h, 1 - A2, ...,

1 - An. As a result, Eqs. (6.33), (6.36), (6.39), (6.42), (6.45) and (6.48) coupled with the

above results (a)-(c) imply that:

(d) The eigenvalues of "11 are 1 - A_2), 1- _ _2), 1 and 1 _ while

the eigenvalues of _(2)+ A_a) A_2) )t_l) A_2) )_(+3) )t(3)-11 are 1+ + ,1+ + ,1+ and1+ _ .

(e) The eigenvaluesof _(a)+,.,21are 1+_ 1), I+A_ a), 1+

of v (2)+ _ _1) _ a_)_21 are 1 , 1 - ,)l_1), 1 and 1 -

If/Theeigenv uesof are1+ ,1+ 1+
_31 are 1 , 1 - )_), 1 - and 1 -

A_ ) and 1 + A(J ), while the eigenvalues

_(__).

)t_ ) and 1 + _(__2),while the eigenvalues

Note that the matrices referred to in (d)-(f) are nonsingular, and therefore their inverses

exist, if the eigenvalues of these matrices are nonzero [54, p.14]. To complete the proof,

we need only to show that these eigenvalues are nonzero if ve < 2/3.

To proceed, note that, because c > 0, it follows from Eqs. (D.24)-(D.26) that

v(+l) > _+(P) > v(J ), and v(3 ) > r/+(P) > v(J ) (D.51)

and

v(+3) > _+(P) + q+(P) > v(_a) (D.521

With the aid of Eqs. (D.31), (D.35), (D.51) and (D.52), Eq. (D.39), which is equivalent to

(3/2)re < 1, implies that

-_IA_)I< 1, g = 1,2,3 (D.53)
2

3 3
I¢+(P)l < 1, _ Ir/+(P)] < 1, and 3 14+(p) + r/+(p) ] < 1 (D.54)2

and
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Next note that Eqs. (D.15), (D.16), (D.24)-(D.26) and Eqs. (D.46)-(D.50)imply that

)_(_) 3 u(_) _= 1,2,3 (D.55)
2

and

= -_ - -_ r/+(P), and + _ (_+(P) + r/+(P)) (D.56)

It now follows from Eqs. (D.53)-(D.56) that each one of the eigenvalues listed in (d)-(f)

has the form of 1 4- x with Ix[ < 1 if ue < 2/3. Thus these eigenvalues are all positive if

ue < 2/3. QED.
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Figure 10. -- (a) Conservation elements CEr (j, k, n), r = 1, 2, 3, for any (j, k, n)

1')1. (b) Solution element SE (j, k, n) for any (j, k, n) e l) l.
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Figure 21. -- Concept of dual space-time meshes. (a) The dual space-time mesb.

(b) A rectangular space-time region shared by CE_(I/2,1/2) and

CE+(0, I/2).

NASA/TM--1998-208843 117



c ('_, ,a_)

D _ B . --w''q

(_A_,o) _ .--" ../(o, a_)

/

F (,_j_,-An)

Figure 22. -- The numerical and analytical domains of dependence
associated with the 2D a-scheme.

- j

E A

F (,_,(,-&n)

Figure 23. -- The numerical and analytical domains of dependence
associated with the 2D CE/SE Euler solvers.

NASA/TM--1998-208843 118





REPORT DOCUMENTATION PAGE Fo_ Approved.
OMBNO.0704-0188

Public reporting burden for this collect©n of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1998 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Space-Time Conservation Element and Solution Element Method--A New High-
Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws

1.The Two-Dimensional Time Marching Schemes

6. AUTHOR(S)

Sin-Chung Chang, Xiao-Yen Wang, and Chuen-Yen Chow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-538-03-11-00

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-11456

10. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA TM-- 1998-208843

11. SUPPLEMENTARY NOTES

Sin-Chung Chang, NASA Lewis Research Center. Xiao-Yen Wang, Department ot" Aerospace Engineering and Mechanics,

University of Minnesota, Minneapolis, Minnesota 55455; Chuen-Yen Chow, Department of Aerospace Engineering and

Science, University of Colorado at Boulder, Boulder, Colorado 80309-0429; Responsible person, Sin-Chung Chang,

organization code 5880, (216) 433-5874.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories: 34, 59 and 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new high resolution and genuinely multidimensional numerical method for solving conservation laws is being devel-

oped. It was designed to avoid the limitations of the traditional methods, and was built from ground zero with extensive

physics considerations. Nevertheless, its foundation is mathmatically simple enough that one can build from it a coherent,

robust, efficient and accurate numerical framework. Two basic beliefs that set the new method apart from the established

methods are at the core of its development. The first belief is that, in order to capture physics more efficiently and

realistically, the modeling focus should be placed on the original integral form of the physical conservation laws, rather

than the differential form. The latter form follows from the integral form under the additional assumption that the physical

solution is smooth, an assumption that is difficult to realize numerically in a region of rapid change, such as a boundary

layer or a shock. The second belief is that, with proper modeling of the integral and differential forms themselves, the

resulting numerical solution should automatically be consistent with the properties derived from the integral and differen-

tial forms, e.g., the.jump conditions across a shock and the properties of characteristics. Therefore a much simpler and

more robust method can be developed by not using the above derived properties explicitly.

14. SUBJECT TERMS

Space-Time; Flux conservation; Conservation element; Solution element; Shocks;

Contact discontinuities

i 17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OFPAGES

125
16. PRICE CODE

A06
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102


